Skip to main content
Log in

Effect of dry density and pH on the diffusion behavior of lanthanum in compacted Chinese GMZ bentonite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Diffusion experiments in compacted GaoMiaoZi (GMZ) bentonite were performed with La(III) using the in-diffusion method, and the effects of dry density and pH were emphasized. The apparent diffusion coefficient (D a) was obtained at the end of the experiment. D a decreases with increasing dry density of 1.3–1.7 Mg m−3 as well as slightly decreases as pH increases from 3.6 to 8.9. The D a range is (2–16) × 10−12 m2 s−1 under the experimental conditions. The distribution coefficients (K d) for La(III) in compacted GMZ bentonite are much smaller than those on powdered bentonite obtained from batch experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Montes-H G, Duplay J, Martinez L, Geraud Y, Rousset-Tournier B (2003) Influence of interlayer cations on the water sorption and swelling-shrinkage of MX-80 bentonite. Appl Clay Sci 23:309–321

    Article  CAS  Google Scholar 

  2. Chen YG, Huang RQ, Zhu CM, Wu DB, Sun YH, He Y, Ye WM (2013) Adsorptive removal of La(III) from aqueous solutions with 8-hydroxyquinoline immobilized GMZ bentonite. J Radioanal Nucl Chem 68:281–288

    Google Scholar 

  3. Samper J, Zheng L, Montenegro L, Fernandez AM, Pedro R (2008) Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test. Appl Geochem 23:1186–1201

    Article  CAS  Google Scholar 

  4. Krajnak A, Pivarciova L, Rosskopfova O, Galambos M, Rajec P (2015) Adsorption of nickel on rhyolitic Slovak bentonites. J Radioanal Nucl Chem 304:587–593

    Article  CAS  Google Scholar 

  5. Chen YG, He Y, Ye WM, Sui WH, Xiao MM (2013) Effect of shaking time, ionic strength, temperature and pH value on desorption of Cr(III) adsorbed onto GMZ bentonite. T Nonferr Metal Soc 23:3482–3489

    Article  CAS  Google Scholar 

  6. Chen YG, He Y, Ye WM, Lin CH, Zhang XF, Ye B (2012) Removal of chromium(III) from aqueous solutions by adsorption on bentonite from Gaomiaozi, China. Environ Earth Sci 67:1261–1268

    Article  CAS  Google Scholar 

  7. Boult KA, Cowper MM, Heath TG, Sato H, Shibutani T, Yui M (1998) Towards an understanding of the sorption of U(VI) and Se(IV) on sodium bentonite. J Contam Hydrol 35:141–150

    Article  CAS  Google Scholar 

  8. Hu J, Xu D, Chen L, Wang XK (2009) Characterization of MX-80 bentonite and its sorption of radionickel in the presence of humic and fulvic acids. J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  9. Chen YG, Zhu BH, Wu DB, Wang QG, Yang YH, Ye WM, Guo JF (2012) Eu (III) adsorption using di (2-thylhexly) phosphoric acid-immobilized magnetic GMZ bentonite. Chem Eng J 181:387–396

    Article  Google Scholar 

  10. Montes-H G, Marty N, Fritz B, Clement A, Michau N (2005) Modelling of long-term diffusion-reaction in a bentonite barrier for radioactive waste confinement. Appl Clay Sci 30:181–198

    Article  CAS  Google Scholar 

  11. Garcia-Gutierrez M, Cormenzana JL, Missana T, Alonso U, Mingarro M (2011) Diffusion of strongly sorbing cations (60Co and 152Eu) in compacted FEBEX bentonite. Phys Chem Earth 36:1708–1713

    Article  Google Scholar 

  12. Shackelford CD (1991) Laboratory diffusion testing for waste disposal-A review. J Contam Hydrol 7:177–217

    Article  CAS  Google Scholar 

  13. Grathwohl P (1998) Diffusion in natural porous media: contaminant transport, sorption/desorption and dissolution kinetics. Springer, New York

    Book  Google Scholar 

  14. Glaus MA, Aertsens M, Appelo CAJ, Kupcik T, Maes N, Van Laer L, Van Loon LR (2015) Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite. Geochim Cosmochim Ac 165:376–388

    Article  CAS  Google Scholar 

  15. Kozaki T, Inada K, Sato S, Ohashi H (2001) Diffusion mechanism of chloride ions in sodium montmorillonite. J Contam Hydrol 47:159–170

    Article  CAS  Google Scholar 

  16. Garcia-Gutierrez M, Cormenzana JL, Missana T, Mingarro M (2004) Diffusion coefficients and accessible porosity for HTO AND 36Cl in compacted FEBEX bentonite. Appl Clay Sci 26:65–73

    Article  CAS  Google Scholar 

  17. Lee JO, Cho WJ, Hahn PS, Lee KJ (1996) Effect of dry density on Sr-90 diffusion in a compacted Ca-bentonite for a backfill of radioactive waste repository. Ann Nucl Energy 23:727–738

    Article  CAS  Google Scholar 

  18. Wu T, Wang H, Zheng Q, Zhao YL, Li JY, Van Loon LR (2014) Diffusion behavior of Se(IV) and Re(VII) in GMZ bentonite. Appl Clay Sci 101:136–140

    Article  CAS  Google Scholar 

  19. Yu JW, Neretnieks I (1997) Diffusion and sorption properties of radionuclides in compacted bentonite. Svensk Kärnslehantering AB/Swedish Nuclear Fuel and Waste Management Company, Stockholm

    Google Scholar 

  20. Wu T, Wang H, Zheng Q, Zhao YL, Li JY (2015) Effect of organic matter on125I diffusion in bentonite. J Radioanal Nucl Chem 303:255–260

    Article  CAS  Google Scholar 

  21. Nowamooz H, Masrouri F (2009) Density-dependent hydromechanical behavior of a compacted expansive soil. Eng Geol 106:105–115

    Article  Google Scholar 

  22. Muurinen A, Tournassat C, Hadi J, Greneche JM (2014) Sorption and diffusion of Fe(II) in bentobite. Posiva Oy, Eurajoki

  23. Wang XK, Chen YX, Wu YC (2004) Diffusion of Eu(III) in compacted bentonite-effect of pH, solution concentration and humic acid. Appl Radiat Isotopes 60:963–969

    Article  CAS  Google Scholar 

  24. Wang XK (2003) Diffusion of 137Cs in compacted bentonite: Effect of pH and concentration. J Radioanal Nucl Chem 258:315–319

    Article  CAS  Google Scholar 

  25. Wang XK, Liu XP (2004) Effect of pH and concentration on the diffusion of radiostrontium in compacted bentonite-a capillary experimental study. Appl Radiat Isotopes 61:1413–1418

    Article  CAS  Google Scholar 

  26. Ye WM, Chen YG, Chen B, Wang Q, Wang J (2010) Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng Geol 116:12–20

    Article  Google Scholar 

  27. Ye WM, Cui YJ, Qian LX, Chen B (2009) An experimental study of the water transfer through confined compacted GMZ bentonite. Eng Geol 108:169–176

    Article  Google Scholar 

  28. Ye WM, Wan M, Chen B, Chen YG, Cui YJ, Wang J (2012) Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions. Eng Geol 126:1–7

    Article  Google Scholar 

  29. Chen YG, Ye WM, Yang XM, Deng FY, He Y (2011) Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environ Earth Sci 64:329–336

    Article  CAS  Google Scholar 

  30. Chen YG, Zhu CM, Sun YH, Duan HY, Ye WM, Wu DB (2012) Adsorption of La(III) onto GMZ bentonite: effect of contact time, bentonite content, pH value and ionic strength. J Radioanal Nucl Chem 292:1339–1347

    Article  CAS  Google Scholar 

  31. Wang SW, Dong YH, He M, Chen L, Yu XJ (2009) Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions. Appl Clay Sci 43:164–171

    Article  CAS  Google Scholar 

  32. Zhao DL, Chen SH, Yang SB, Yang X, Yang ST (2011) Investigation of the sorption behavior of Cd(II) on GMZ bentonite as affected by solution chemistry. Chem Eng J l66:1010–1016

  33. Chen YG, Niu LH, He Y, Ye WM, Zhu CM (2015) Diffusion of La3 + in compacted GMZ bentonite used as buffer material in HLW disposal. Engineering Geology for Society and Territory-Volume 6. Springer International Publishing, Berlin, pp 515–517

  34. Sun ZG, Wang LH, Zhou Q, Huang XH (2013) Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings. Chemosphere 93:344–352

    Article  CAS  Google Scholar 

  35. Abdel-Haleem AS, Sroor A, EI-Bahi SM, Zhony E (2001) Heavy metals and rare earth elements in phosphate fertilizer components using instrumental neutron activation analysis. Appl Radiat Isotopes 55:569–573

    Article  CAS  Google Scholar 

  36. Wu DB, Zhu CM, Chen YG, Zhu BH, Yang YH, Wang QG, Ye WM (2012) Preparation, characterization and adsorptive study of rare earth ions using magnetic GMZ bentonite. Appl Clay Sci 62:87–93

    Article  Google Scholar 

  37. Yang T, Knutsson S, Liu XD (2016) Swelling properties and permeability of expandable clays of potential use for nuclear waste disposal. J Earth Sci Geotec Eng 6:49–61

    Article  Google Scholar 

  38. Wen ZJ (2006) Physical property of China’s buffer material for high-level radioactive waste repositories. Chin J Rock Mech and Eng 25:794–800

    Google Scholar 

  39. Chen YG, Cui YJ, Tang AM, Wang Q, Ye WM (2014) A preliminary study on hydraulic resistance of bentonite/host-rock seal interface. Géotechnique 64:997–1002

    Article  Google Scholar 

  40. Lloret A, Villar MV (2007) Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite. Phys Chem Earth 32:701–715

    Article  Google Scholar 

  41. Bradbury MH, Baeyens B (2002) Porewater chemistry in compacted re-saturated MX-80 bentonite: physico-chemical characterisation and geochemical modelling. PSI Bericht 02-10, Villigen PSI and NTB 01-08, Nagra, Wettingen

  42. Madsen FT (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Min 33:109–129

    Article  CAS  Google Scholar 

  43. Bradbury MH, Baeyens B (2003) A comparison of apparent diffusion coefficients measured in compacted Kunigel V1 bentonite with those calculated from batch sorption measurements and De (HTO) Data: A Case Study for Cs(I), Ni(II), Sm(III), Am(III), Zr(IV) and Np(V). Paul Scherrer Institut, CH-5232 Villigen PSI

  44. Sato H, Ashida T, Kohara Y, Yui M, Sasaki N (1992) Effect of dry density on diffusion of some radionuclides in compacted sodium bentonite. J Nucl Sci Technol 29:873–882

    Article  CAS  Google Scholar 

  45. Garcia-Gutierrez M, Cormenzana JL, Missana T, Mingarro M, Molinero J (2006) Overview of laboratory methods employed for obtaining diffusion coefficients in FEBEX compacted bentonite. J Iber Geol 32:37–53

    Google Scholar 

  46. Idemitsu K, Xia X, Ichishima T, Furuya H, Inagaki Y, Arima T, Mitsugashira T, Hara M, Suzuki Y (1999) Diffusion of plutonium in compacted bentonites in the reducing condition with corrosion product of iron. In: MRS Proceedings. Cambridge University Press, vol 608, pp 261–266

  47. Idemitsu K, Kozaki H, Yuhara M, Arima T, Inagaki Y (2015) Diffusion behavior of selenite in purified bentonite. Prog Nucl Energy. doi:10.1016/j.pnucene.2015.08.012

    Google Scholar 

  48. Wang Q, Cui YJ, Tang AM (2014) Time- and density-dependent microstructure features of compacted bentonite. Soils Found 54:657–666

    Article  Google Scholar 

  49. Tom S, Yasir AB (2014) Swelling pressure characteristics of compacted Chinese Gaomiaozi bentonite GMZ01. Soils Found 54:748–759

    Article  Google Scholar 

  50. Sawatsky NG, Oscarson DW (1991) Diffusion of technetium in dense bentonite under oxidizing and reducing conditions. Soil Sci Soc Am J 55:1261–1267

    Article  CAS  Google Scholar 

  51. Luckham PF, Rossi S (1999) The colloidal and rheological properties of bentonite suspensions. Adv Colloid Interface Sci 82:43–92

    Article  CAS  Google Scholar 

  52. Castellanos E, Villar MV, Romero E, Lloret A, Gens A (2008) Chemical impact on the hydro-mechanical behavior of high-density FEBEX bentonite. Phys Chem Earth 33:S516–S526

    Article  Google Scholar 

  53. Wu DB, Zhang L, Wang L, Zhu BH, Fan LY (2011) Adsorption of lanthanum by magnetic alginate-chitosan gel beads. J Chem Technol Biot 86:345–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (41422207, 41272287 & 41527801), China Atomic Energy Authority ([2011]1051), Scientific Research Fund of Hunan Provincial Education Department (15A009), Opening Fund of Hunan Key Laboratory of Geomechanics and Engineering Safety (13KZ|KZ070030103) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jia, L., Niu, L. et al. Effect of dry density and pH on the diffusion behavior of lanthanum in compacted Chinese GMZ bentonite. J Radioanal Nucl Chem 310, 1303–1310 (2016). https://doi.org/10.1007/s10967-016-4972-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4972-5

Keywords

Navigation