Skip to main content
Log in

Development of a multidimensional gamma-spectrometer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A high-sensitivity multidimensional gamma-spectrometer is being developed within the shallow underground laboratory at Pacific Northwest National Laboratory (PNNL, USA). The system consists of two broad energy germanium detectors, inside a low-background shield, fitted with a cosmic veto system. The detector has advanced functionality, including operation in single or combined detector mode, with reductions in the cosmic background of 49.6% and Compton suppression of 6.5%. For selected radionuclides this provides increased peak identification, reductions in uncertainty of 27.6% and MDA improvements of 52.7%. The design uses commercially off-the-shelf components to provide a powerful solution for low-level nuclear measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burnett JL, Davies AV (2011) Investigating the time resolution of a compact multidimensional gamma-spectrometer. J Radioanal Nucl Chem 288:699–703

    Article  CAS  Google Scholar 

  2. Britton R, Davies AV, Burnett JL, Jackson MJ (2015) A high-efficiency HPGe coincidence system for environmental analysis. J Environ Radioact 146:1–5

    Article  CAS  Google Scholar 

  3. Cooper JA, Perkins RW (1972) A versatile Ge(Li)–NaI(Tl) coincidence-anticoincidence gamma-ray spectrometer for environmental and biological problems. Nucl Instrum Methods 99:125–146

    Article  CAS  Google Scholar 

  4. Howard C, Ferm M, Cesaratto J, Daigle S, Iliadis C (2014) Radioisotope studies of the Farmville meteorite using γγ-coincidence spectrometry. Appl Radiat Isot 94:23–29

    Article  CAS  Google Scholar 

  5. Wogman NA, Robertson DE, Perkins RW (1967) A large detector, anticoincidence shielded multidimensional gamma-ray spectrometer. Nucl Instrum Methods 50:1–10

    Article  CAS  Google Scholar 

  6. Povinec P (1982) Dual parameter gamma-ray spectrometer for low-level counting. Isot Environ Health Stud 18(3):92–95

    Google Scholar 

  7. Britton RE, Burnett JL, Davies AV, Regan PH (2012) Preliminary simulations of NaI(Tl) detectors, and coincidence analysis using event stamping. J Radioanal Nucl Chem 295(1):573–577

    Article  Google Scholar 

  8. Orrell JL, Aalseth CE, Arnquist IJ, Eggemeyer TA, Glasgow BD, Hoppe EW, Keillor ME, Morley SM, Myers AW, Overman CT, Shaff SM, Thommasson KS (2015) Assay methods for U-238, Th-232, and Pb-210 in lead and calibration of Bi-210 bremsstrahlung emission from lead. arXiv:1512.06494 [physics.ins-det]

  9. Burnett JL, Croudace IW, Warwick PE (2011) Short-lived variations in the background gamma-radiation dose. J Radiol Prot 30(3):525–533

    Article  Google Scholar 

  10. Britton R (2012) Compton suppression systems for environmental radiological analysis. J Radioanal Nucl Chem 292:33–39

    Article  CAS  Google Scholar 

  11. Burnett JL, Davies AV (2014) Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples. Nucl Instrum Methods Phys Res A 747:37–40

    Article  CAS  Google Scholar 

  12. Burnett JL, Davies AV (2013) Further development of a cosmic veto gamma-spectrometer. J Radioanal Nucl Chem 298:987–992

    Article  CAS  Google Scholar 

  13. Burnett JL, Davies AV (2013) Development of a cosmic veto gamma-spectrometer. J Radioanal Nucl Chem 292:1007–1010

    Article  Google Scholar 

  14. Aalseth CE, Bonicalzi RM, Cantaloub MG, Day AR, Erikson LE, Fast J, Forrester JB, Fuller ES, Glasgow BD, Greenwood LR, Hoppe EW, Hossbach TW, Hyronimus BJ, Keillor ME, Mace EK, McIntyre JI, Merriman JH, Myers AW, Overman CT, Overman NR, Panisko ME, Seifert A, Warren GA, Runkle RC (2012) A shallow underground laboratory for low-background radiation measurements and materials development. Rev Sci Instrum 83(11):113503

    Article  CAS  Google Scholar 

  15. Canberra (2006) Model S561 Genie 2000 Batch Tools Support Reference Manual. Canberra Industries (USA): 9234203B V1.3

  16. Britton R, Burnett JL, Davies AV, Regan PH (2015) Coincidence corrections for a multi-detector gamma spectrometer. Nucl Instrum Methods Phys Res A 769:20–25

    Article  CAS  Google Scholar 

  17. Burnett JL, Davies AV (2012) Compton suppressed gamma-spectrometry for comprehensive nuclear-test-ban treaty samples. J Radioanal Nucl Chem 295:497–499

    Article  Google Scholar 

  18. Britton R (2012) Compton suppression systems for environmental radiological analysis. J Radioanal Nucl Chem 292:33–39

    Article  CAS  Google Scholar 

  19. Britton R, Burnett JL, Davies AV, Regan PH (2014) Monte-Carlo optimisation of a Compton suppression system for use with a broad-energy HPGe detector. Nucl Instrum Methods Phys Res A 762:42–53

    Article  CAS  Google Scholar 

  20. Britton R, Burnett JL, Davies AV, Regan PH (2014) Maximising the sensitivity of a gamma spectrometer for low-energy, low-activity radionuclides using Monte Carlo simulations. J Environ Radioact 134:1–5

    Article  CAS  Google Scholar 

  21. Britton R, Burnett JL, Davies AV, Regan PH (2014) Improving the effectiveness of a low-energy Compton suppression system. Nucl Instrum Methods Phys Res A 729:64–68

    Article  Google Scholar 

  22. Forrester JB, Greenwood LR, Miley HS, Myers AW, Overman CT (2013) Construction of a shallow underground low-background detector for a CTBT radionuclide laboratory. J Radioanal Nucl Chem 296:1061–1064

    Article  CAS  Google Scholar 

  23. Miley HS, Brodzinski RL, Reeves JH (1992) Low-background counting systems compared. J Radioanal Nucl Chem 160(2):371–385

    Article  CAS  Google Scholar 

  24. Currie LA (1968) Limits for qualitative detection and quantitative determination. Appl Radiochem Anal Chem 40(3):586–593

    Article  CAS  Google Scholar 

  25. Burnett JL, Milbrath BD (2016) Radionuclide observables for the Platte underground nuclear explosive test on 14 April 1962. J Environ Radioact 164:232–238

    Article  CAS  Google Scholar 

  26. Burnett JL, Miley HS, Milbrath BD (2015) Radionuclide observables during the integrated field exercise of the comprehensive nuclear-test-ban treaty. J Environ Radioact 153:195–200. doi:10.1016/j.jenvrad.2016.01.002

    Article  Google Scholar 

  27. Burnett JL, Davies AV (2014) On-site inspection for the radionuclide observables of an underground nuclear explosion. J Radioanal Nucl Chem 303:2073–2079. doi:10.1007/s10967-014-3739-0

    Google Scholar 

  28. England TR, Rider BF (1993) Evaluation and compilation of fission product yields. Los Alamos National Laboratory (USA). LA-UR-94-3106, ENDF-349

Download references

Acknowledgements

The authors thank individuals at PNNL who have provided support at various times. This includes Allan Myers, Kimbrelle Thommasson, Brian Glasgow, Angela Edwards, Joel Forrester, Cory Overman, Todd Hossbach and Marty Keillor. The views expressed here do not necessarily reflect the opinion of the United States Government, the United States Department of Energy, or the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Burnett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnett, J.L., Cantaloub, M.G., Mayer, M.F. et al. Development of a multidimensional gamma-spectrometer. J Radioanal Nucl Chem 312, 81–86 (2017). https://doi.org/10.1007/s10967-017-5202-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5202-5

Keywords

Navigation