Skip to main content

Gamma-Ray Spectroscopy

  • Reference work entry
  • First Online:
Handbook of Particle Detection and Imaging

Abstract

The common methods of analyzing gamma-ray spectra obtained from detectors capable of energy discrimination are discussed. Gamma-ray spectra generally are in the form of detector response versus discrete channel number. The methods considered for gamma-ray spectroscopy are somewhat general and can be applied to other types of spectroscopy. The general objective of spectroscopy is to obtain, at a minimum, the qualitative identification of the source (e.g., source energies or radionuclides present). However, most spectroscopy applications seek quantitative information also, as expressed by, e.g., the source strength or the radionuclide concentration. Various methods for qualitative and quantitative analysis are summarized, and illustrative examples are provided. A review of detectors used for gamma-ray spectroscopy is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bacrania MK et al (2009) Large-area microcalorimeter detectors for ultra-high-resolution x ray and gamma-ray spectroscopy. IEEE Trans Nuc Sci 56(4):2299–2302

    Article  ADS  Google Scholar 

  • Barache D, Antoine J-P, Dereppe J-M (1997) The continuous wavelet transform, an analysis tool for NMR spectroscopy. J Magn Res 128:1–11

    Article  ADS  Google Scholar 

  • Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  • Cline JE (1968) Studies of detection efficiencies and operating characteristics of Ge(Li) detectors. IEEE Trans Nucl Sci NS-15:198–213

    Article  ADS  Google Scholar 

  • Dunn WL (1981) Inverse Monte Carlo analysis. J Comput Phys 41(11):154–166

    Article  ADS  MathSciNet  Google Scholar 

  • Dunn WL, Dunn TS (1982) An assymetric model for XPS analysis. Surf Interface Anal 4(3):77–88

    Article  Google Scholar 

  • Dunn WL, Shultis JK (2009) Monte Carlo analysis for design and analysis of radiation detectors. Radiat Phys Chem 78:852–858

    Article  ADS  Google Scholar 

  • Gardner RP, Sood A (2004) A Monte Carlo simulation approach for generating NaI detector response functions (DRF’s) that accounts for nonlinearity and variable flat continua. Nucl Instrum Methods B213:87–99

    Article  ADS  Google Scholar 

  • Gardner RP, Xu L (2009) Status of the monte carlo library least-squares (MCLLS) approach for non-linear radiation analyzer problems. Radiat Phys Chem 78:843–851

    Article  ADS  Google Scholar 

  • Gentile NA (2001) Implicit monte carlo diffusion – an acceleration method for monte carlo time-dependent radiative transfer simulations. J Comput Phys 172:543–571

    Article  ADS  Google Scholar 

  • Gilmore G (2008) Practical gamma-ray spectrometry, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Haitz RH (1961) Model of the electrical behavior of a microplasma. J Appl Phys 35:1370–1376

    Article  ADS  Google Scholar 

  • Heath RL, Helmer RG, Schmittroth LA, Cazier GA (1967) Method for generating single gamma-ray shapes for analysis of spectra. Nucl Instrum Methods 47:281–304

    Article  ADS  Google Scholar 

  • IEEE/ANSI (1996) IEEE standard test procedures for germanium gamma-ray detectors, standard 325–1996

    Google Scholar 

  • Kargar A, Brooks AC, Harrison MJ, Chen H, Awadalla S, Bindley G, McGregor DS (2009) Effect of crystal length on CdZnTe frisch collar device performance. In: IEEE Nucl Sci Symp Conf Rec, Orlando, 24 Oct–1 Nov, pp 2017–2022

    Google Scholar 

  • Kis Z, Fazekas B, Östör J, Révay Z, Belgya T, Molnár GL, Koltay L (1998) Comparison of efficiency functions for Ge gamma-ray detectors in a wide energy range. Nucl Instrum Methods A418:374–386

    Article  ADS  Google Scholar 

  • Marshall III JH, Zumberge JF (1989) On-line measurements of bulk coal using prompt gamma neutron activation analysis. Nucl Geophys 3:445–459

    Google Scholar 

  • McGregor DS (2016) Detection and measurement of radiation, Ch 8. In: Shultis JK, Faw RE (eds) Fundamentals of nuclear science and engineering, 3rd edn. CRC Press, New York

    Google Scholar 

  • McGregor DS (2018) Materials for gamma-ray spectrometers: inorganic scintillators. Ann Rev Mater Res 48:13.1–13.33

    Article  Google Scholar 

  • McGregor DS, Shultis JK (2020) Radiation detection: concepts, methods, and devices. CRC Press, Boca Raton

    Book  Google Scholar 

  • McIntyre RJ (1961) Theory of microplasma instability of silicon. J Appl Phys 32:983–995

    Article  ADS  Google Scholar 

  • Mickael MW (1991) A complete inverse Monte Carlo model for energy-dispersive x ray fluorescence analysis. Nucl Instrum Methods A301:523–542

    Article  ADS  Google Scholar 

  • Molnar GL (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Moré JJ, Garbow BS, Hillstrom KE (1980) User’s guide for MINPACK-1, Report ANL-80-74, Argonne National Laboratory

    Google Scholar 

  • Nafee SS (2011) A mathematical approach to determine escape peak efficiencies of high-purity germanium cylindrical detectors for prompt gamma neutron activation analysis. Nucl Tech 175:162–167

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN 77. The art of scientific computing, 2nd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  • Renker D (2006) Geiger-mode avalanche photodiodes, history, properties and problems. Nucl Instrum Methods A567:48–56

    Article  ADS  Google Scholar 

  • Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Newbury DE, Martinis JM (1997) High-resolution, energy-dispersive microcalorimeter spectrometer for x ray microanalysis. J Microscopy 188(3):196–223

    Article  Google Scholar 

  • Xu Y, Weaver JB, Healy DM Jr, Lu J (1994) Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Trans Image Proc 3(6):747–758

    Article  ADS  Google Scholar 

  • Yacout AM, Dunn WL (1987) Application of the inverse monte carlo method to energy-dispersive x ray fluorescence. Adv x ray Anal 30:113–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas S. McGregor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dunn, W.L., McGregor, D.S., Shultis, J.K. (2021). Gamma-Ray Spectroscopy. In: Fleck, I., Titov, M., Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-93785-4_17

Download citation

Publish with us

Policies and ethics