Skip to main content
Log in

Cyclic neutron activation analysis of large samples with a pulsed 14 MeV neutron source

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A method for the analysis of 200 L steel drums filled with various amounts of concrete and polyethylene by large sample cyclic neutron activation analysis (LS-CNAA) using a pulsed 14 MeV neutron source was developed. The elemental composition obtained for the homogenous samples was found to agree well with the expected values, the differences lying between −3 and +15%. For the heterogeneous samples, the results were found to agree with the expected values within ±39%. Depending on the polyethylene content of the samples, detection limits ranging between 14 and 24 mg kg−1 for cadmium, 520 and 740 mg kg−1 for mercury and 5.5 and 53 g kg−1 for lead were achieved for a counting time of about 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bode P, Overwater RMW (1993) Trace-element determinations in very large samples: a new challenge for neutron activation analysis. J Radioanal Nucl Chem 167:169–176

    Article  Google Scholar 

  2. Overwater RMW, Bode P, de Goeij JJM, Hoogenboom JE (1996) Feasibility of elemental analysis of kilogram-size samples by instrumental neutron activation analysis. Anal Chem 68:341–348

    Article  CAS  Google Scholar 

  3. Blaauw M, Lakmaker O, van Aller P (1997) The accuracy of instrumental neutron activation analysis of kilogram-size inhomogeneous samples. Anal Chem 69:2247–2250

    Article  CAS  Google Scholar 

  4. Bode P, Overwater RMW, de Goeij JJM (1997) Large-sample neutron activation analysis: present status and prospects. J Radioanal Nucl Chem 216:5–11

    Article  CAS  Google Scholar 

  5. Baas HW, Blaauw M, Bode P, de Goej JJM (1999) Collimated scanning towards 3D-INAA of inhomogeneous large samples. Fresenius J Anal Chem 363:753–759

    Article  CAS  Google Scholar 

  6. Blaauw M, Baas HW, Donze M (2003) Height-resolved large-sample INAA of a 1 m long, 13 cm diameter ditch-bottom sample. Nucl Instrum Methods Phys Res A 505:512–516

    Article  CAS  Google Scholar 

  7. Lin X, Henkelmann R (2002) Instrumental neutron activation analysis of large samples: a pilot experiment. J Radioanal Nucl Chem 251:197–204

    Article  CAS  Google Scholar 

  8. Vasilopoulou T, Tzika F, Koster-Ammerlaam MJJ, Stamatelatos IE (2011) Large sample neutron activation analysis of a reference inhomogeneous sample. J Radioanal Nucl Chem 289:731–737

    Article  CAS  Google Scholar 

  9. Haddad Kh, Alsomel N (2011) Large sample neutron activation analysis of municipal solid waste using shutdown MNSR photoneutrons. J Radioanal Nucl Chem 288:823–828

    Article  CAS  Google Scholar 

  10. Vasilopoulou T, Tzika F, Stamatelatos IE (2012) Collimated scanning for large sample neutron activation analysis of inhomogeneous samples. J Radioanal Nucl Chem 291:479–483

    Article  CAS  Google Scholar 

  11. Stamatelatos IE, Tzika F, Vasilopoulou T, Koster-Ammerlaam MJJ (2010) Large sample neutron activation analysis of a ceramic vase. J Radioanal Nucl Chem 283:735–740

    Article  CAS  Google Scholar 

  12. Vasilopoulou T, Stamatelatos IE, Montoy EH, Bedregal PS, Tsalafoutas I, Bode P (2015) Large sample neutron activation analysis of irregular-shaped pottery artifact. J Radioanal Nucl Chem 303:853–858

    Article  CAS  Google Scholar 

  13. Tzika F, Stamatelatos IE, Kalef-Ezra J, Bode P (2004) Large sample neutron activation analysis: correction for neutron and gamma attenuation. Nukleonika 49(3):115–121

    CAS  Google Scholar 

  14. Zhang HQ, Ni BF, Tian WZ, Zhang GY, Huang DH, Liu CX, Xiao CJ, Sun HC (2011) Correction factors for the gamma attenuation effects in large sample neutron activation analysis. J Radioanal Nucl Chem 287:513–517

    Article  CAS  Google Scholar 

  15. Mandour MAA, Badawi A, Mohamed NMA, Emam A (2016) Towards a methodology for bulk sample neutron activation analysis. J Taibah Univ Sci 10:235–241

    Article  Google Scholar 

  16. Overwater RMW, Bode P (1998) Computer simulations of the effects of inhomogeneities on the accuracy of large sample INAA. Appl Radiat Isot 49:967–978

    Article  CAS  Google Scholar 

  17. Sueki K, Kobayashi K, Sato W, Nakahara H, Tomizawa T (1996) Nondestructive determination of major elements in a large sample by prompt gamma ray neutron activation analysis. Anal Chem 68:2203–2209

    Article  CAS  Google Scholar 

  18. Degenaar LH, Blaauw M, Bode P, de Goeij JJM (2004) Validation of MCNP for large sample thermal-beam prompt-gamma neutron activation analysis. J Radioanal Nucl Chem 2:311–315

    Article  Google Scholar 

  19. Blaauw M, Degenaar LH, de Goeij JJM (2007) Development of a non-invasive method for the determination of the macroscopic neutron cross sections of a sample matrix in large-sample prompt-gamma neutron activation analysis. J Radioanal Nucl Chem 3:765–770

    Article  Google Scholar 

  20. Blaauw M, Belgya T (2005) Neutron self-shielding correction for prompt gamma neutron activation analysis of large samples. J Radioanal Nucl Chem 265:257–259

    Article  CAS  Google Scholar 

  21. Whetstone ZD, Kearfott KJ (2014) A review of conventional explosives detection using active neutron interrogation. J Radioanal Nucl Chem 301:629–639

    Article  CAS  Google Scholar 

  22. Lim CA (2004) Recent development in neutron-induced gamma activation for on-line multielemental analysis in industry. J Radioanal Nucl Chem 262:525–532

    Article  CAS  Google Scholar 

  23. Dulloo AR, Ruddy FH, Congedo TV, Gehrke RJ (1998) Detection limits of a laboratory pulsed gamma neutron activation analysis system for the nondestructive assay of mercury, cadmium and lead. Nucl Tech 123:103–112

    CAS  Google Scholar 

  24. Mauerhofer E, Havenith A (2014) The MEDINA facility for the assay of chemotoxic inventory of radioactive waste packages. J Radioanal Nucl Chem 302:483–488

    Article  CAS  Google Scholar 

  25. Randriamalala TH, Rossbach M, Mauerhofer E, Zs Révay, Söllradl S, Wagner FM (2016) FaNGaS: a new instrument for (n, n′γ) reaction measurements at FRM II. Nucl Instrum Methods Phys Res A 806:370–377

    Article  CAS  Google Scholar 

  26. Rossbach M, Randriamalala T, Mauerhofer E, Zs Révay, Söllradl S (2016) Prompt and delayed inelastic scattering reactions from fission neutron irradiation—first results of FaNGaS. J Radioanal Nucl Chem 309:149–154

    Article  CAS  Google Scholar 

  27. Mauerhofer E, Havenith A, Kettler (2016) Prompt gamma neutron activation analysis of a 200 L steel drum homogeneously filled with concrete. J Radioanal Nucl Chem 309:273–278

    Article  CAS  Google Scholar 

  28. Mildenberger F, Mauerhofer E (2016) Prompt gamma neutron activation analysis of large heterogeneous samples composed of concrete and polyethylene. J Radioanal Nucl Chem 309:1265–1269

    Article  CAS  Google Scholar 

  29. Mildenberger F, Mauerhofer E (2016) Thermal neutron die-away times in large samples irradiated with a pulsed 14 MeV neutron source. J Radioanal Nucl Chem 307:661–667

    Article  CAS  Google Scholar 

  30. Molnár GL (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Berlin

    Book  Google Scholar 

  31. Database of prompt gamma rays from slow neutron capture for elemental analysis, IAEA library cataloguing in publication data, ISBN 92-0-101306-X, Vienna January 2007

  32. Havenith A (2015) Stoffliche Charakterisierung radioaktiver Abfallprodukte durch ein Multi-Element-Analyseverfahren basierend auf der instrumentellen Neutronen-Aktivierungs-Analyse—MEDINA—Schriften des Forschungszentrum Jülich, Energie & Umwelt/Energy & Environment, Band/Volume 248, ISBN 978-3-95806-033-2

  33. Givens WW, Mills WR, Caldwell RL (1970) Cyclic activation analysis. Nucl Instrum Methods 80:95–103

    Article  CAS  Google Scholar 

  34. Chadwick MB, Herman M, Oblozinsky P et al (2011) ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112(12):2887–2996

    Article  CAS  Google Scholar 

  35. Erdtmann G (1976) Neutron activation tables, vol 6., Kernchemie in EinzeldarstellungenVerlag Chemie, New York

    Google Scholar 

  36. Chu SYF, Ekström LP, Firestone R, The Lund/LNBL Nuclear Data Search, Version 2.0, February 1999. http://nucleardata.nuclear.lu.se/toi/

  37. Kettler J (2010) Prompt-Gamma-Neutronen-Aktivierungs-Analyse zur zerstörungsfreien Charakterisierung radioaktiver Abfälle, Schriften des Forschungszentrum Jülich, Energie & Umwelt/Energy & Environment, Band/Volume 82, ISBN 978-3-89336-665-1

  38. Tables of cross sections calculated from JENDL-4.0, Tables of Nuclear Data, Nuclear Data Center, Japan Atomic Energy Agency. http://wwwndc.jaea.go.jp/NuC/index.html

  39. Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol 48:1–30

    Article  CAS  Google Scholar 

  40. Belgya T (2012) Prompt gamma activation analysis at the Budapest research reactor. Phys Proc 31:99–109

    Article  CAS  Google Scholar 

  41. Nicol T, Mauerhofer E, Carasco C, Perot B, Collot J (2016) HPGe-detector shielding optimization with MCNP for the MEDINA neutron activation cell. J Radioanal Nucl Chem. doi:10.1007/s10967-016-4816-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Mauerhofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mildenberger, F., Mauerhofer, E. Cyclic neutron activation analysis of large samples with a pulsed 14 MeV neutron source. J Radioanal Nucl Chem 311, 917–927 (2017). https://doi.org/10.1007/s10967-016-5098-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5098-5

Keywords

Navigation