Skip to main content
Log in

A review of conventional explosives detection using active neutron interrogation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Conventional explosives are relatively easy to obtain and may cause massive harm to people and property. There are several tools employed by law enforcement to detect explosives, but these can be subverted. Active neutron interrogation is a viable alternative to those techniques, and includes: fast neutron analysis, thermal neutron analysis, pulsed fast/thermal neutron analysis, neutron elastic scatter, and fast neutron radiography. These methods vary based on neutron energy and radiation detected. A thorough review of the principles behind, advantages, and disadvantages of the different types of active neutron interrogation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hussein EMA, Waller EJ (1998) Review of one-side approaches to radiographic imaging for detection of explosives and narcotics. Radiat Meas 29(6):581–591

    Article  CAS  Google Scholar 

  2. Steinfeld JI, Wormhoudt J (1998) Explosive detection: a challenge for physical chemistry. Annu Rev Phys Chem 49(1):203–232

    CAS  Google Scholar 

  3. Singh S, Singh M (2003) Explosive detection systems (EDS) for aviation security. Signal Process 83(1):31–55

    Article  Google Scholar 

  4. Moore DS (2004) Instrumentation for trace detection of high explosives. Rev Sci Instrum 75(8):2499–2512

    Article  CAS  Google Scholar 

  5. Moore DS (2007) Recent advances in trace explosives detection instrumentation. Sens Imaging 8(1):9–38

    Article  Google Scholar 

  6. Gozani T, Ryge P, Shea P, Seher C, Morgado RE (1989) Explosive detection system based on thermal neutron activation. International carnahan conference on crime prevention. IEEE AES Magazine 4(12):17–20

    Article  Google Scholar 

  7. Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54(3):487–500

    Article  CAS  Google Scholar 

  8. Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54(3):515–529

    Article  CAS  Google Scholar 

  9. Jimènez AM, Navas JM (2004) Chemiluminescence detection systems for the analysis of explosives. J Hazard Mater 106(1):1–8

    Article  Google Scholar 

  10. Faust AA (2002) Detection of explosive devices using x-ray backscatter radiation. SPIE conference on penetrating radiation systems and applications IV. Proc SPIE 4786:17–28

    Article  Google Scholar 

  11. Strom DJ, Callerame J (2004) Imaging and identification technologies for homeland security. In: Brodsky A, Johnson RH Jr, Goans RE (eds) Public protection from nuclear, chemical, and biological terrorism: The 2004 Health Physics Society Summer School. Medical Physics Publishing, Madison, pp 49–68

    Google Scholar 

  12. Tang S, Hussein EMA (2004) Use of isotopic gamma sources for identifying anti-personnel landmines. Appl Radiat Isotopes 61(1):3–10

    Article  CAS  Google Scholar 

  13. da Silva AX, Crispim VR (2001) Use of thermal neutron tomography for the detection of drugs and explosives. Radiat Phys Chem 61(3–6):767–769

    Google Scholar 

  14. Harding G (2004) X-ray scatter tomography for explosives detection. Radiat Phys Chem 71(3–4):869–881

    CAS  Google Scholar 

  15. Lehnert AL, Kearfott KJ (2010) The detection of explosive materials: review of considerations and methods. Nucl Technol 172(3):325–334

    CAS  Google Scholar 

  16. Buffler A, Tickner J (2010) Detecting contraband using neutrons: challenges and future directions. Radiat Meas 45(10):1186–1192

    Article  CAS  Google Scholar 

  17. Liu Y, Sowerby BD, Tickner JR (2008) Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection. Appl Radiat Isotopes 66(4):463–473

    Article  CAS  Google Scholar 

  18. Vourvopoulos G, Womble PC (2001) Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta 54(3):459–468

    Article  CAS  Google Scholar 

  19. Knoll GF (2010) Radiation detection and measurement, 4th edn. Wiley, Hoboken, pp 19–22

    Google Scholar 

  20. Aleksandrov VD, Bogolubov EP, Bochkarev OV, Korytko LA, Nazarov VI, Polkanov YG, Ryzhkov VI, Khasaev TO (2005) Application of neutron generators for high explosives, toxic agents, and fissile material detection. Appl Radiat Isotopes 63(5–6):537–543

    Article  CAS  Google Scholar 

  21. Chichester DL, Simpson JD, Lemchak M (2007) Advanced compact accelerator neutron generator technology for active neutron interrogation field work. J Radioanal Nucl Chem 271(3):629–637

    Article  CAS  Google Scholar 

  22. Hall JM, Rusnak B, Shen S, Fitsos PJ (2006) High-energy neutron imaging developments at LLNL. Lawrence Livermore National Laboratory: ESC Annual Report (FY05)

  23. Lanza R (2007). Nuclear techniques for explosive detection: current prospects and requirements for future development. Proceedings of an IAEA technical meeting: combined devices for humanitarian demining and explosives, 13–17 Nov 2006

  24. Reda AM (2011) Monte Carlo simulations of a D-T neutron generator shielding for landmine detection. Radiat Meas 46(10):1187–1193

    Article  CAS  Google Scholar 

  25. Whetstone ZD, Kearfott KJ (2011) Use of multiple layers of repeating material to effectively collimate an isotropic neutron source. Nucl Technol 176(3):395–413

    Article  CAS  Google Scholar 

  26. Beyerle A, Hurley JP, Tunnel L (1990) Design of an associated particle imaging system. Nucl Instrum Meth A 299(1–3):458–462

    Article  Google Scholar 

  27. Chichester D, Lemchak M, Simpson J (2005) The API 120: A portable neutron generator for the associated particle technique. Nucl Instrum Meth B 241(1–4):753–758

    Article  CAS  Google Scholar 

  28. Sudac D, Blagus S, Valkovic V (2007) The limitation of associated alpha particle technique for contraband container inspections. Nucl Instrum Meth B 263(1):123–126

    Article  CAS  Google Scholar 

  29. Gozani T (1994) Novel applications of fast neutron interrogation methods. Nucl Instrum Meth A 353(1–3):635–640

    Article  CAS  Google Scholar 

  30. Gozani T, Strellis D (2007) Advances in neutron based bulk explosives detection. Nucl Instrum Meth B 261(1–2):311–315

    Article  CAS  Google Scholar 

  31. Sudac D, Matika D, Valkovic V (2008) Identification of materials hidden inside a sea-going cargo container filled with an organic cargo by using the tagged neutron inspection system. Nucl Instrum Meth A 589(1):47–56

    Article  CAS  Google Scholar 

  32. Dubnikova F, Kosloff R, Zeiri Y, Karpas Z (2002) Novel approach to the detection of triacetone triperoxide (TATP): its structure and its complexes with ions. J Phys Chem A 106(19):4951–4956

    CAS  Google Scholar 

  33. Cinausero M, Lunardon M, Nebbia G, Pesente S, Viesti G, Filippini V (2004) Development of a thermal neutron sensor for humanitarian demining. Appl Radiat Isot 61(1):59–66

    Article  CAS  Google Scholar 

  34. Runkle RC, White TA, Miller EA, Caggiano JA, Collins BA (2009) Photon and neutron interrogation techniques for chemical explosives detection in air cargo: a critical review. Nucl Instrum Meth A 603(3):510–528

    Article  CAS  Google Scholar 

  35. Davies JA, Hart PA, Wood GA (1987) The determination of tin in explosive materials by thermal neutron activation analysis. J Radioanal Nucl Chem 111(1):71–79

    Article  CAS  Google Scholar 

  36. Brown DR, Gozani T (1997) Thermal neutron analysis technology. SPIE Conference on Physics-Based Technologies for the Detection of Contraband. Proc SPIE 2936:85–94

    Article  CAS  Google Scholar 

  37. McFee JE, Cousins T, Jones T, Brisson JR, Jamieson T, Waller E, LeMay F, Ing H, Clifford ETH, Selkirk B (1998) A thermal neutron activation system for confirmatory nonmetallic land mine detection. SPIE conference on detection and remediation technologies for mines and minelike targets III. Proc SPIE 3392:553–564

    Article  CAS  Google Scholar 

  38. Buffler A (2004) Contraband detection with fast neutrons. Radiat Phys Chem 71(3–4):853–861

    CAS  Google Scholar 

  39. Im H, Cho H, Song BC, Park YJ, Chung Y, Kim W (2006) Analytical capability of an explosives detection by a prompt gamma-ray neutron activation analysis. Nucl Instrum Meth A 566(2):442–447

    Article  CAS  Google Scholar 

  40. Shaw TJ, Brown D, D’Arcy J, Liu F, Shea P, Sivakumar M, Gozani T (2005) Small threat and contraband detection with TNA-based systems. Appl Radiat Isot 63(5–6):779–782

    Article  CAS  Google Scholar 

  41. Favalli A, Pedersen B (2007) Design and characterization of a pulsed neutron interrogation facility. Radiat Prot Dosim 126(1–4):74–77

    Article  CAS  Google Scholar 

  42. Clifford E, Ing H, McFee J, Cousins T (1999) High rate counting electronics for a thermal neutron analysis land mine detector. SPIE conference on penetrating radiation systems and applications. Proc SPIE 3769:155–166

    Article  CAS  Google Scholar 

  43. Clifford ETH, McFee JE, Ing H, Andrews HR, Tennant D, Harper E, Faust AA (2007) A militarily fielded thermal neutron activation sensor for landmine detection. Nucl Instrum Meth A 579(1):418–425

    Article  CAS  Google Scholar 

  44. Brooks FD, Drosg M, Smit FD, Wikner C (2012) Detection of explosive remnants of war by neutron thermalisation. Appl Radiat Isot 70(1):119–127

    Article  CAS  Google Scholar 

  45. Haslip D, Cousins T, Andrews H, Chen J, Clifford E, Ing H, McFee J (2001) DT neutron generator as a source for a thermal neutron activation system for confirmatory land mine detection. Hard X-ray and gamma-ray detector physics III. Proc SPIE 4507:232–242

    Article  CAS  Google Scholar 

  46. Koltick D, Kim Y, McConchie S, Novikiv I, Belbot M, Gardner G (2007) A neutron based vehicle-borne improvised explosive device detection system. Nucl Instrum Meth A 261(1–2):277–280

    Article  CAS  Google Scholar 

  47. Lanza RC, Zhang L (1999) CAFNA, Coded aperture imaging for fast neutron analysis: application to contraband and explosive detection. Fifteenth Int’l conference on the applications of accelerators in research and industry. AIP Conf Proc 475:678–681

    Article  CAS  Google Scholar 

  48. Accorsi R, Lanza RC (2001) Coded aperture fast neutron analysis: latest design advances. Application of accelerators in research and industry – Sixteenth Int’l Conf. AIP Conf Proc 576:491–494

    Article  CAS  Google Scholar 

  49. Sudac D, Vlakovic V, Nad K, Obhodas J (2011) The underwater detection of TNT explosive. IEEE T Nucl Sci 58(2):547–551

    Article  CAS  Google Scholar 

  50. Gozani T (1995) Understanding the physics limitations of PFNA - the nanosecond pulsed fast neutron analysis. Nucl Instrum Meth B 99(1–4):743–747

    Article  CAS  Google Scholar 

  51. Naqvi AA, Al-Matouq FA, Khiari FZ, Isab AA, Raashid M, Khateeb-ur-Rehman (2013) Hydrogen, carbon and oxygen determination in proxy material samples using a LaBr 3:Ce detector. Appl Radiat Isot 78:145–150

    Article  CAS  Google Scholar 

  52. Farahmand M, Boston AJ, Grint AN, Nolan PJ, Joyce MJ, Mackin RO, D’Mellow B, Aspinall M, Peyton AJ, van Silfhout R (2007) Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy. Nucl Instrum Meth B 261(1–2):396–400

    Article  CAS  Google Scholar 

  53. Todd RW, Nightingale JM, Everett DB (1974) A proposed γ camera. Nature 251:132–134

    Article  CAS  Google Scholar 

  54. Brewer RL, Dunn WL, Heider S, Matthew C, Yang X (2012) The signature-based radiation-scanning approach to standoff detection of improvised explosive devices. Appl Radiat Isot 70(7):1181–1185

    Article  CAS  Google Scholar 

  55. Womble PC, Campbell C, Vourvopoulos G, Paschal J, Gácsi Z, Hui S (2001) Detection of Explosives With the PELAN System. Application of accelerators in research and industry–sixteenth Int’l Conference. AIP Conf Proc 576:1069–1072

    Article  CAS  Google Scholar 

  56. Evans RJ, Jupp ID, Lei F, Ramsden D (1999) Design of a large-area CsI(Tl) photo-diode array for explosives detection by neutron-activation gamma-ray spectroscopy. Nucl Instrum Meth A 422(1–3):900–905

    Article  CAS  Google Scholar 

  57. Dokhale PA, Csikai J, Oláh A (2001) Investigations on neutron-induced prompt gamma ray analysis of bulk samples. Appl Radiat Isot 54(6):967–971

    Article  CAS  Google Scholar 

  58. Strellis D, Gozani J, Stevenson J (2009) Air cargo inspection using pulsed fast neutron analysis. International topical meeting on nuclear research applications and utilization of accelerators, Vienna, Austria, 4–8 May 2009

  59. Nunes WV, da Silva AX, Crispim VR, Schirru R (2002) Explosives detection using prompt-gamma neutron activation and neural networks. Appl Radiat Isot 56(6):937–943

    Article  CAS  Google Scholar 

  60. Buffler A, Brooks FD, Allie MS, Bharuth-Ram K, Nchodu MR (2001) Material classification by fast neutron scattering. Nucl Instrum Meth B 173(4):483–502

    Article  CAS  Google Scholar 

  61. Lehnert AL, Kearfott KJ (2011) Simplified simulation of fast neutron scattering for an explosives detection application. Nucl Sci Eng 168(3):278–286

    CAS  Google Scholar 

  62. Brooks FD, Drosg M, Buffler A, Allie MS (2004) Detection of anti-personnel landmines by neutron scattering and attenuation. Appl Radiat Isot 61(1):27–34

    Article  CAS  Google Scholar 

  63. Gokhale P, Hussein E (1997) A Cf-252 neutron transmission technique for bulk detection of explosives. Appl Radiat Isot 48(7):973–979

    Article  CAS  Google Scholar 

  64. Eberhardt JE, Rainey S, Stevens RJ, Sowerby BD, Tickner JR (2005) Fast neutron radiography scanner for the detection of contraband in air cargo containers. Appl Radiat Isot 63(2):179–188

    Article  CAS  Google Scholar 

  65. Sowerby BC, Tickner JR (2007) Recent advances in fast neutron radiography for cargo inspection. Nucl Instrum Meth A 580(1):799–802

    Article  CAS  Google Scholar 

  66. Overley JC (1985) Determination of H, C, N, O content of bulk materials from neutron-attenuation measurements. Int J Appl Radiat Isot 36(3):185–191

    Article  CAS  Google Scholar 

  67. Overley J, Chmelik M, Rasmussen R, Sieger G, Schofield R, Lefevre H (1997) Results of tests for explosives in luggage from fast-neutron time-of-flight transmission measurements. SPIE international conference neutrons in research and industry. Proc SPIE 2867:219–222

    Article  CAS  Google Scholar 

  68. Overley JC, Chmelik MS, Rasmussen RJ, Schofield RMS, Sieger GE, Lefevre HW (2006) Explosives detection via fast neutron transmission spectroscopy. Nucl Instrum Meth B 251(2):470–478

    Article  CAS  Google Scholar 

  69. Mor I, Vartsky D, Bar D, Feldman G, Goldberg MB, Katz D, Sayag E, Shmueli I, Cohen Y, Tal A, Vagish Z, Bromberger B, Dangendorf V, Mugai D, Tittelmeier K, Weierganz M (2009) High spatial resolution fast-neutron imaging detectors for pulsed fast neutron transmission spectroscopy. J Instrum 4:P05016

    Article  Google Scholar 

  70. Raas WL, Blackburn B, Boyd E, Hall JM, Kohse G, Lanza R, Rusnak B, Watterson JIW (2005) Neutron resonance radiography for explosives detection: technical challenges. Nuclear science symposium conference record, 2005 IEEE, (1), 129–133

  71. McFee J, Faust A, Andrews HR, Clifford T, Ing H, Cousins T, Haslip D (2003) The feasibility of neutron moderation imaging for land mine detection. P Soc Photo-opt Ins 4(3):209–240

    Google Scholar 

  72. Datema CP, Bom VR, Eijk CW Ev (2003) Monte Carlo simulations of landmine detection using neutron backscattering imaging. Nucl Instrum Meth A 513(1–2):398–402

    Article  CAS  Google Scholar 

  73. Fioretto E, Barbui M, Giangrandi S, Cinausero M, Prete G, Nebbia G, Viesti G (2004) Neutron back-scattering sensor for the detection of land mines. Nucl Instrum Meth B 213:457–459

    Article  CAS  Google Scholar 

  74. Bom VR, Datema CP, van Eijk CWE (2004) The status of the Delft University Neutron Backscatter Landmine Detector (DUNBLAD). Appl Radiat Isot 61(1):21–25

    Article  CAS  Google Scholar 

  75. Elsheikh N, Viesti G, ElAgib I, Habbani F (2012) On the use of a (252Cf – 3He) assembly for landmine detection by the neutron back-scattering method. Appl Radiat Isot 70(4):643–649

    Article  CAS  Google Scholar 

  76. Valković V, Sudac D, Blagus S, Nađ K, Obhođaš J, Vekić BG, Pesente S (2007) Fast neutron inspection of sea containers for the presence of “dirty bomb”. Nucl Instrum Meth B 263(1):119–122

    Article  Google Scholar 

  77. Carasco C, Perot B, Bernard S, Mariani A, Szabo J-L, Sannie G, Roll Th, Valkovic V, Sudac D, Viesti G, Lunardon M, Bottosso C, Fabris D, Nebbia G, Pesente S, Moretto S, Zenoni A, Donzella A, Moszynski M, Gierlik M, Batsch T, Wolski D, Klamra W, Le Tourneur P, Lhuissier M, Colonna A, Tintori C, Peerani P, Sequeira V, Salvatoj M (2008) In-field test of EURITRACK tagged neutron inspection system. Nucl Instrum Meth A 588(3):397–405

    Article  CAS  Google Scholar 

  78. Al-Bahi AM, Soliman AYA, Hassan MHM, Mohamed NMA (2013) Concept design of an illicit material detection system. J Radioanal Nucl Chem, Online Publication, Oct 2013 1–6

  79. Dunn WL, Banerjee K, Allen A, van Meter J (2007) Feasibility of a method used to identify targets that are likely to contain conventional explosives. Nucl Instrum Meth B 263(1):179–182

    Article  CAS  Google Scholar 

  80. Wu L, Miley GH, Momota H, Shrestha PJ (2007) An integrated broad area coverage fusion neutron/x-ray interrogation unit. Fusion Sci Technol 52(4):1096–1100

    CAS  Google Scholar 

  81. Hussein EMA, Desrosiers M, Waller EJ (2005) On the use of radiation scattering for the detection of landmines. Radiat Phys Chem 73(1):7–19

    CAS  Google Scholar 

  82. Alfonso K, Marshal E, King M, Strellis D, Gozani T (2013) MCNP simulation benchmarks for a portable inspection system for narcotics, explosives, and nuclear material detection. IEEE T Nucl Sci 60(2):520–527

    Article  CAS  Google Scholar 

  83. Lehnert AL, Kearfott KJ (2011) Preliminary identification of flags for a novel algorithm-based approach for explosives detection using neutron interrogation for a simulated idealized cargo container scenario. Nucl Instrum Meth A 638(1):201–205

    Article  CAS  Google Scholar 

  84. Lehnert AL, Flaska M, Kearfott KJ (2012) D–D neutron-scatter measurements for a novel explosives-detection technique. Nucl Instrum Meth A 693:195–202

    Article  CAS  Google Scholar 

  85. Mihalczo J, Mullens J (2012) Nuclear material identification system with imaging and gamma-ray spectrometry for plutonium, highly enriched uranium, high explosives, and other materials. Oak Ridge National Laboratory—Global Nuclear Security Technology Division: ORNL/TM-2012/22

  86. Panel on Assessment of the Practicality of Pulsed Fast Neutron Analysis for Aviation Security, National Research Council (2002) Summary–Assessment of the practicality of pulsed fast neutron analysis for aviation security. The National Academies, Washington

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Adrienne Lehnert and Tomasz Zak for their assistance in locating sources for this paper. This research was performed under appointment to the Department of Homeland Security (DHS) Scholarship and Fellowship Program, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and DHS. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are the authors’ and do not necessarily reflect the policies and views of DHS, DOE, or ORAU/ORISE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Kearfott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whetstone, Z.D., Kearfott, K.J. A review of conventional explosives detection using active neutron interrogation. J Radioanal Nucl Chem 301, 629–639 (2014). https://doi.org/10.1007/s10967-014-3260-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3260-5

Keywords

Navigation