Skip to main content
Log in

Perhydroxy-CB[6] decorated graphene oxide composite for uranium(VI) removal

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We report the synthesis of perhydroxy-cucurbit[6]uril decorated graphene oxide composite [denoted as HO-CB[6]/graphene oxide (GO)] through a self-assembly process in dimethyl sulfoxide solvent. The obtained composite was characterized by transmission electron microscopy, thermogravimetric and differential temperature analysis, fourier transformed infrared spectroscopy, and XRD. HO-CB[6]/GO was used as an adsorbent for the removal of uranium(VI) from aqueous solution. The results showed that HO-CB[6]/GO exhibited a fast sedimentation velocity and a high adsorption capacity to uranium(VI). HO-CB[6]/GO could be a promising candidate as sorbent for uranium-bearing wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chapman N, Hooper A (2012) The disposal of radioactive wastes underground. Proc Geol Assoc 123:46–63

    Article  Google Scholar 

  2. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination–an overview. Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  3. Konietzka R (2015) Gastrointestinal absorption of uranium compounds—a review. Regul Toxicol Pharmacol 71:125–133

    Article  CAS  Google Scholar 

  4. Erkaya I, Arica M, Akbulut A, Bayramoglu G (2014) Biosorption of uranium(VI) by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 299:1993–2003

    Article  CAS  Google Scholar 

  5. Bayramoglu G, Arica M (2016) Amidoxime functionalized Trametes trogii pellets for removal of uranium (VI) from aqueous medium. J Radioanal Nucl Chem 307:373–384

    Article  CAS  Google Scholar 

  6. Fan F, Bai J, Fan F, Yin X, Wang Y, Tian W, Wu X, Qin Z (2014) Solvent extraction of uranium from aqueous solutions by α-benzoinoxime. J Radioanal Nucl Chem 300:1039–1043

    Article  CAS  Google Scholar 

  7. Bayramoglu G, Çelik G, Arica M (2006) Studies on accumulation of uranium by fungus Lentinus sajor-caju. J Hazard Mater 136:345–353

    Article  CAS  Google Scholar 

  8. Beltrami D, Cote G, Mokhtari H, Courtaud B, Moyer BA, Chagnes A (2014) Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem Rev 114:12002–12023

    Article  CAS  Google Scholar 

  9. Gu Z, Wang Y, Tang J, Yang J, Liao J, Yang Y, Liu N (2015) The removal of uranium(VI) from aqueous solution by graphene oxide–carbon nanotubes hybrid aerogels. J Radioanal Nucl Chem 303:1835–1842

    Article  CAS  Google Scholar 

  10. Abdi MR, Shakur HR, Rezaee Ebrahim Saraee K, Sadeghi M (2014) Effective removal of uranium ions from drinking water using CuO/X zeolite based nanocomposites: effects of nano concentration and cation exchange. J Radioanal Nucl Chem 300:1217–1225

    Article  CAS  Google Scholar 

  11. Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52

    Article  CAS  Google Scholar 

  12. Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M (2013) Preparation of Fe3O4@C@ layered double hydroxide composite for magnetic separation of uranium. Ind Eng Chem Res 52:10152–10159

    Article  CAS  Google Scholar 

  13. Wang C, Li Y, Liu C (2015) Sorption of uranium from aqueous solutions with graphene oxide. J Radioanal Nucl Chem 304:1017–1025

    Article  CAS  Google Scholar 

  14. Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 4:4991–5000

    Article  CAS  Google Scholar 

  15. Taha-Tijerina J, Venkataramani D, Aichele CP, Tiwary CS, Smay JE, Mathkar A, Chang P, Ajayan PM (2015) Quantification of the particle size and stability of graphene oxide in a variety of solvents. Part Part Syst Char 32:334–339

    Article  CAS  Google Scholar 

  16. Freeman WA, Mock WL, Shih NY (1981) Cucurbituril. J Am Chem Soc 103:7367–7736

    Article  CAS  Google Scholar 

  17. Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X (2012) Cucurbituril chemistry: a tale of supramolecular success. RSC Adv 2:1213–1247

    Article  CAS  Google Scholar 

  18. Gurbuz S, Idris M, Tuncel D (2015) Cucurbituril-based supramolecular engineered nanostructured materials. Org Biomol Chem 13:330–347

    Article  CAS  Google Scholar 

  19. Karcher S, Kornmüller A, Jekel M (2001) Cucurbituril for water treatment. Part I: solubility of cucurbituril and sorption of reactive dye. Water Res 35:3309–3316

    Article  CAS  Google Scholar 

  20. Kornmuller A, Karcher S, Jekel M (2001) Cucurbituril for water treatment. Part II: ozonation and oxidative regeneration of cucurbituril. Water Res 35:3317–3324

    Article  CAS  Google Scholar 

  21. Lim S, Kim H, Selvapalam N, Kim KJ, Cho SJ, Seo G, Kim K (2008) Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew Chem 120:3400–3403

    Article  Google Scholar 

  22. Shao L, Wang X, Ren Y, Wang S, Zhong J, Chu M, Tang H, Luo L, Xie D (2016) Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal. Chem Eng J 286:311–319

    Article  CAS  Google Scholar 

  23. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  24. Jon SY, Selvapalam N, Oh DH, Kang J-K, Kim S-Y, Jeon YJ, Lee JW, Kim K (2003) Facile synthesis of cucurbit[n]uril derivatives via direct functionalization expanding utilization of cucurbit[n]uril. J Am Chem Soc 125:10186–10187

    Article  CAS  Google Scholar 

  25. Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    Article  CAS  Google Scholar 

  26. Murphy RJ, Lenhart JJ, Honeyman BD (1999) The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter. Colloids Surf Physicochem Eng Asp 157:47–62

    Article  CAS  Google Scholar 

  27. Sherman DM, Peacock CL, Hubbard CG (2008) Surface complexation of U(VI) on goethite (α-FeOOH). Geochim Cosmochim Acta 72:298–310

    Article  CAS  Google Scholar 

  28. Zhao Y, Li J, Zhang S, Chen H, Shao D (2013) Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites. RSC Adv 3:18952–18959

    Article  CAS  Google Scholar 

  29. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solution. Dalton Trans 41:6182–6188

    Article  CAS  Google Scholar 

  30. Bayramoglu G, Akbulut A, Arica M (2015) Study of polyethyleneimine-and amidoxime-functionalized hybrid biomass of Spirulina (Arthrospira) platensis for adsorption of uranium (VI) ion. Environ Sci Pollut Res 22:17998–18010

    Article  CAS  Google Scholar 

  31. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y (2011) Sorption of uranium (VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

  32. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  33. Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium (VI). Chem Eng J 255:604–612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the financial support of the National Natural Science Foundation of China (Grant No. 21401174) and the Science and Technology Development Foundation of China Academy of Engineering Physics (2014B0301050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Tang or Xiaofang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Zhong, J., Ren, Y. et al. Perhydroxy-CB[6] decorated graphene oxide composite for uranium(VI) removal. J Radioanal Nucl Chem 311, 627–635 (2017). https://doi.org/10.1007/s10967-016-5067-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5067-z

Keywords

Navigation