Skip to main content
Log in

Synthesis of amine-functionalized MCM-41 and its highly efficient sorption of U(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Herein, the amine-functionalized MCM-41 mesoporous silica (denoted as MCM-41-NH2) was synthesized and applied to adsorption and recovery U(VI) ions from aqueous solutions. The results showed that the sorption of U(VI) on MCM-41-NH2 was strongly dependent on pH and ionic strength. The sorption was mainly dominated by outer-sphere surface complexation and the sorption equilibrium can be reached within 60 min. The maximum sorption capacity of MCM-41-NH2 for U(VI) was calculated to be 386.98 mg g−1 at pH 5.60, much higher than that of the other reported materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Eng Rev 11(7):1388–1413

    Article  Google Scholar 

  2. Zhao D, Chen L, Sun M, Li F (2015) Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U(VI) from aqueous solutions. J Radioanal Nucl Chem 306(1):1–9

    Article  Google Scholar 

  3. Zhao Y, Wang X, Li J, Wang X (2015) Amidoxime functionalization of mesoporous silica and its high removal of U(VI). Polym Chem 6:5376–5384

    Article  CAS  Google Scholar 

  4. Xu L, Zheng T, Yang S, Zhang L, Wang J, Liu W, Chen L, Diwu J, Chai Z, Wang S (2016) Uptake mechanisms of Eu(III) on hydroxyapatite: a potential permeable reactive barrier backfill material for trapping trivalent minor actinides. Environ Sci Technol 50:3852–3859

    Article  CAS  Google Scholar 

  5. World Health Organization (2008) Guidelines for drinking water quality, third ed. Incorporating the First and Second Addenda. Recommendations, Geneva, 1:515

  6. Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen J, Mäkeläinen I, Väisänen SB, Penttilä IM, Komulainen H (2002) Renal effects of uranium in drinking water. Environ Health Perspect 110:337–342

    Article  CAS  Google Scholar 

  7. Yin X, Bai J, Fan F, Cheng W, Tian W, Wang Y, Qin Z (2015) Amidoximed silica for uranium (VI) sorption from aqueous solution. J Radioanal Nucl Chem 303:2135–2142

    CAS  Google Scholar 

  8. Sodaye H, Nisan S, Poletiko C, Prabhakar S, Tewari PK (2009) Extraction of uranium from the concentrated brine rejected by integrated nuclear desalination plants. Desalination 1(1):9–32

    Article  Google Scholar 

  9. Yang S, Zong P, Hu J, Sheng G, Wang Q, Wang X (2013) Fabrication of β-cyclodextrin conjugated magnetic HNT/iron oxide composite for high-efficient decontamination of U (VI). Chem Eng J 214:376–385

    Article  CAS  Google Scholar 

  10. VermaP K, Pathak P, Mohapatra M, Yadav AK, Jha S, Bhattacharyya D, Mohapatra PK (2015) Spectroscopic investigations on sorption of uranium onto suspended bentonite: effects of pH, ionic strength and complexing anions. Radiochim Acta 103:293–303

    Google Scholar 

  11. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441

    Article  CAS  Google Scholar 

  12. Wang X, Chen Z, Wang X (2015) Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions. Sci China Chem 58:1766–1773

    Article  CAS  Google Scholar 

  13. Ding C, Cheng W, Sun Y, Wang X (2015) Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Hazard Mater 295:127–137

    Article  CAS  Google Scholar 

  14. Ding C, Cheng W, Sun Y, Wang X (2015) Effects of Bacillus subtilis on the reduction of U (VI) by nano-Fe0. Geochim Cosmochim Acta 165:86–107

    Article  CAS  Google Scholar 

  15. Hirotsu T, Katoh S, Sugasaka K, Takai N, Seno M, Itagaki T (1987) Adsorption of uranium on cross-linked amidoxime polymer from seawater. Ind Eng Chem Res 26(10):1970–1977

    Article  CAS  Google Scholar 

  16. Suzuki T, Saito K, Sugo T, Ogura H, Oguma K (2000) Fractional elution and determination of uranium and vanadium adsorbed on amidoxime fiber from seawater. Anal Sci 16(4):429–432

    Article  CAS  Google Scholar 

  17. Bai J, Yin X, Zhu Y, Fan F, Wu X, Tian W, Tan C, Zhang X, Wang Y, Cao S, Fan F, Qin Z, Guo J (2016) Selective uranium sorption from salt lake brines by amidoximated Saccharomyces cerevisiae. Chem Eng J 283:889–895

    Article  CAS  Google Scholar 

  18. Vivero-Escoto J, Carboni M, Abney CW, Lin W (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous Mesoporous Mater 180:22–31

    Article  CAS  Google Scholar 

  19. Benhamou A, Baudu M, Derriche Z, Basly JP (2009) Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. J Hazard Mater 171:1001–1008

    Article  CAS  Google Scholar 

  20. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860

    Article  CAS  Google Scholar 

  21. Kumar N, Nieminen V, Lindfors LE, Salmi T, Murzin DY, Laine E, Heikkilä T (2002) Cu-H-MCM-41, H-MCM-41 and Na-MCM-41mesoporous molecular sieve catalysts for isomerization of 1-butene to isobutene. Catal Lett 78:105–110

    Article  CAS  Google Scholar 

  22. Mangrulkar PA, Kamble SP, Meshram J, Meshramb J, Rayalua SS (2008) Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. J Hazard Mater 160:414–421

    Article  CAS  Google Scholar 

  23. Sepehrian H, Waqif-Husain S (2010) Influence of the synthesis pH on sorption behavior of mesoporous MCM-41 for toxic metal ions. Chin J Chem Eng 28:1923–1926

    Article  CAS  Google Scholar 

  24. Chen S, Guo B, Wang Y, Li Y, Song L (2013) Study on sorption of U (VI) onto ordered mesoporous silicas. J Radioanal Nucl Chem 295:1435–1442

    Article  CAS  Google Scholar 

  25. Ravindran V, Stevens MR, Badriya BN, Pirbazari M (1999) Modeling the sorption of toxic metals on chelant-impregnated adsorbents. AIChE J 45:1135–1146

    Article  CAS  Google Scholar 

  26. Jamali MR, Assadi Y, Shemirani F, Hosseini MRM, Kozani RR, Masteri-Farahani M, Salavati-Niasari M (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579(1):68–73

    Article  CAS  Google Scholar 

  27. Mathew A, Parambadath S, Kim SY, Park S, Ha C (2015) Adsorption of Cr(III) ions using 2-(ureylenemethyl) pyridine functionalized MCM-41. J Porous Mater 22:831–842

    Article  CAS  Google Scholar 

  28. Wu Y, Jin Y, Cao J, Yilihan P, Wen Y, Zhou J (2014) Optimizing adsorption of arsenic (III) by NH2-MCM-41 using response surface methodology. J Ind Eng Chem 20:2792–2800

    Article  CAS  Google Scholar 

  29. Lam KF, Yeung KL, McKay G (2007) Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity. Environ Sci Technol 41:3329–3334

    Article  CAS  Google Scholar 

  30. Pérez-Quintanilla D, Hierro ID, Fajardo M, Sierra I (2006) Preparation of 2-mercaptobenzothiazole-derivatized mesoporous silica and removal of Hg(II) from aqueous solution. J Environ Monit 8:214–222

    Article  Google Scholar 

  31. Chen F, Hong M, You W, Li C, Yu Y (2015) Simultaneous efficient adsorption of Pb2+ and MnO4 ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride. Appl Surf Sci 357:856–865

    Article  CAS  Google Scholar 

  32. Jamali MR, Assadi Y, Shemirani F, Hosseini MRM, Kozani RR, Masteri-Farahani M et al (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579(1):68–73

    Article  CAS  Google Scholar 

  33. Khan MH, Bukhari SMH, Ali A, Liaqat K, Fazal S (2011) Spectrophotometric determination of uranium with arsenazo-III in the presence of N-cetyl-N,N,N trimethylammonium bromide as surfactant. J Radioanal Nucl Chem 289:113–119

    Article  CAS  Google Scholar 

  34. Katragadda S, Gesser HD, Chow A (1997) The extraction of uranium by amidoximated orlon. Talanta 45:257–263

    Article  CAS  Google Scholar 

  35. Chen CY, Li HX, Davis ME (1993) Studies on mesoporous materials: I. Synthesis and characterization of mcm-41. Microporous Mater. 2(1):17–26

    Article  Google Scholar 

  36. Vidya K, Dapurkar SE, Selvam P, Badamali SK, Gupta NM (2001) The entrapment of UO2 2+ in mesoporous MCM-41 and MCM-48 molecular sieves. Microporous Mesoporous Mater 50(2):173–179

    Article  CAS  Google Scholar 

  37. Benhamou A, Basly JP, Baudu M, Derriche Z, Hamacha R (2013) Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate. J Colloid Interface Sci 404:135–139

    Article  CAS  Google Scholar 

  38. Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  39. Yang S, Sheng G, Montavon G, Guo Z, Tan X, Grambow B, Wang X (2013) Investigation of Eu(III) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analyses: role of contact time and humic acid. Geochim Cosmochim Acta 121:84–104

    Article  CAS  Google Scholar 

  40. Wang XX, Yang SB, Shi WQ, Li JX, Wang XK, Hayat T (2015) Different interaction mechanisms of Eu(III) and 243Am(III) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation. Environ Sci Technol 49(19):11721–11728

    Article  CAS  Google Scholar 

  41. Zhao Y, Zong P, Li Y, Li K, Zhao X, Wang H, Zhao X, Wang H, Liu S, Sun Y, He C (2015) Fabrication of oxidized multiwalled carbon nanotubes for the immobilization of U(VI) from aqueous solutions. J Radioanal Nucl Chem 305(2):1–9

    Article  Google Scholar 

  42. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  43. Chen AH, Yang CY, Chen CY, Chen CY, Chen CW (2009) The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J Hazard Mater 163:1068–1075

    Article  CAS  Google Scholar 

  44. Gustafsson J P (2009) Visual MINTEQ ver. 2.61, SE-100 44 Stockholm, Sweden

  45. Xiao J, Chen Y, Zhao W, Xu J (2013) Sorption behavior of U(VI) onto Chinese bentonite: effect of pH, ionic strength, temperature and humic acid. J Mol Liquids 188(12):178–185

    Article  CAS  Google Scholar 

  46. Yang S, Sheng G, Tan X, Hu J, Du J, Montavon G, Wang X (2011) Determination of Ni(II) uptake mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach. Geochim Cosmochim Acta 75:6520–6534

    Article  CAS  Google Scholar 

  47. Wang XX, Fan QH, Yu SJ, Chen ZS, Ai YJ, Sun YB, Hobiny A, Alsaedi A, Wang XK (2015) High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem Eng J 287:448–455

    Article  Google Scholar 

  48. Hayes KF, Leclie JO (1987) Modeling ionic strength effect on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 115:564–572

    Article  CAS  Google Scholar 

  49. Sun YB, Yang SB, Chen Y, Ding CC, Cheng WC, Wang XK (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49(7):4255–4262

    Article  CAS  Google Scholar 

  50. Yang S, Ren X, Zhao G, Shi W, Montavon G, Grambow B, Wang X (2015) Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: batch, modeling, EPR and XAS Studies. Geochim Cosmochim Acta 166:129–145

    Article  CAS  Google Scholar 

  51. Sun Y, Yang S, Sheng G, Guo Z, Tan X, Xu J, Wang X (2011) Comparison of U (VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina. Sep Sci Technol 83:196–203

    Google Scholar 

  52. Yang S, Zong P, Ren X, Wang Q, Wang X (2012) Rapid and highly efficient preconcentration of Eu(III) by core-shell structured Fe3O4@humic acid magnetic nanoparticles. ACS Appl Mater Interface 4:6891–6900

    Article  CAS  Google Scholar 

  53. Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185(2–3):1177–1186

    Article  CAS  Google Scholar 

  54. Fan Q, Tan X, Li J, Wang X, Wu W, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  55. Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X (2011) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans 40:10945–10952

    Article  CAS  Google Scholar 

  56. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  57. Wang Y, Song L, Zhu L, Guo B, Chen S, Wu W (2014) Removal of uranium(VI) from aqueous solution using iminodiacetic acid derivative functionalized SBA-15 as adsorbents. Dalton Trans 43:3739–3749

    Article  CAS  Google Scholar 

  58. Gao J, Hou L, Zhang G, Gu P (2015) Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution. J Hazard Mater 286:325–333

    Article  CAS  Google Scholar 

  59. Wang Y, Zhu L, Guo B, Chen S, Wu W (2014) Mesoporous silica SBA-15 functionalized with phosphonate derivatives for uranium uptake. New J Chem 38:3853–3861

    Article  CAS  Google Scholar 

  60. Yuan L, Liu Y, Shi W, Li Z, Lan J, Feng Y, Zhao Y, Yuan Y, Chai Z (2012) A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. J Mater Chem 22:17019–17026

    Article  CAS  Google Scholar 

  61. Liu Y, Yuan L, Yuan Y, Lan J, Li Z, Feng Y, Zhao Y, Chai Z, Shi W (2011) A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292:803–810

    Article  Google Scholar 

  62. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Jing, Y., Yao, Y. et al. Synthesis of amine-functionalized MCM-41 and its highly efficient sorption of U(VI). J Radioanal Nucl Chem 310, 1001–1011 (2016). https://doi.org/10.1007/s10967-016-4875-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4875-5

Keywords

Navigation