Skip to main content
Log in

Radium concentration in uranium-bearing rocks and minerals by radon emanation after acidic sample dissolution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The applicability of a radon emanation system to radium determination in NORM materials after acidic sample dissolution has been investigated by means of a closed recirculating air loop radon emanation system. After system calibration with radium (226Ra) standard solutions and phosphogypsum samples, the method has been successfully applied to radium analysis in uranium mineral and granite samples. The analysis has shown that the value of 1000 Bq m−3 is the upper limit of the linear response and the method has relatively low detection limits (35 Bq kg−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paridaens J, Vanmarcke H (2001) Radium contamination of the banks of the river Laak as a consequence of the phosphate industry in Belgium. J Environ Radioactiv 54:53–60

    Article  CAS  Google Scholar 

  2. Lysandrou M, Charalambides A, Pashalidis I (2007) Radon emanation from phosphogypsum and related mineral samples in Cyprus. Radiat Meas 42:1583–1585

    Article  CAS  Google Scholar 

  3. Efstathiou M, Sarrou I, Pashalidis I (2013) Emanation studies of radium containing materials by a simple radon monitoring system. J Radioanal Nucl Chem 298:673–677

    Article  CAS  Google Scholar 

  4. Moatar F, Shadizadeh SR, Karbassi AR, Ardalani E, Akbari Derakhshi R, Asadi M (2010) Determination of naturally occurring radioactive materials (NORM) in formation water during oil exploration. J Radioanal Nucl Chem 283:3–7

    Article  CAS  Google Scholar 

  5. Devecchi F, Rizzio E, Colombo G, Fresca Fantoni R (2014) TENORM accumulation and management in refineries. J Radioanal Nucl Chem 299:887–890

    Article  CAS  Google Scholar 

  6. Asikainen M (1981) State of disequilibrium between 238U, 234U, 226Ra and 222Rn in groundwater from bedrock. Geochim Cosmochim Acta 45:201–206

    Article  CAS  Google Scholar 

  7. International Atomic Energy Agency (2010) Analytical methodology for the determination of radium isotopes in environmental samples. Analytical quality in nuclear applications No. IAEA/AQ/19, Vienna

  8. Jia G, Jia J (2012) Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J Environ Radioact 106:98–119

    Article  CAS  Google Scholar 

  9. Lozano JC, Fernandez F, Gomez JMG (1997) Determination of radium isotopes by BaSO4 coprecipitation for the preparation of alpha-spectrometric sources. J Radioanal Nucl Chem 223:133–137

    Article  CAS  Google Scholar 

  10. Jia G, Torri G, Ocone R (2007) Determination of radium isotopes in soil samples by alpha-spectrometry. J Radioanal Nucl Chem 273:779–783

    Article  CAS  Google Scholar 

  11. Sanchez-Cabeza J-A, Pujol L (1998) Simultaneous determination of radium and uranium activities in natural water samples using liquid scintillation counting. Analyst 123:399–403

    Article  CAS  Google Scholar 

  12. Kiliari T, Pashalidis I (2008) Determination of aquatic radon by liquid scintillation counting and airborne radon monitoring system. Radiat Meas 43:1463–1466

    Article  CAS  Google Scholar 

  13. Larivière D, Epov VN, Evans RD, Cornet RJ (2003) Determination of radium-226 in environmental samples by inductively coupled plasma mass spectrometry after sequential selective extraction. J Anal At Spectrom 18:338–343

    Article  Google Scholar 

  14. Sakoda A, Ishimori Y, Yamaoka K (2011) A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl Radiat Isot 69:1422–1435

    Article  CAS  Google Scholar 

  15. Kim G, Burnett WC, Dulaiova H, Swarzenski PW, Moore WS (2001) Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor. Environ Sci Technol 35:4680–4683

    Article  CAS  Google Scholar 

  16. Schubert M, Paschke A, Lieberman E, Burnett WC (2012) Air-water partitioning of 222-Rn and its dependence on water temperature and salinity. Environ Sci Technol 46:3905–3911

    Article  CAS  Google Scholar 

  17. Liatsou I, Pashalidis I (2015) Determination of radium by radon emanation after EDTA-mediated sample dissolution. J Radioanal Nucl Chem 306:445–449

    Article  CAS  Google Scholar 

  18. El-Galy MM, Issa FA, Desouky OA, Diab HM, Khattab MR (2011) Use of alpha spectrometry for analysis of U-isotopes in some granite samples. J Radioanal Nucl Chem 288:805–811

    Article  CAS  Google Scholar 

  19. Cetin E, Altinsoy N, Orgun Y (2012) Natural radioactivity levels of granites used in Turkey. Radiat Prot Dosim 151:299–305

    Article  CAS  Google Scholar 

  20. Sarad (2007) Application note (AN-002), measuring principals—decay statistics—test planning. SARAD GmbH, Dresden-Germany

    Google Scholar 

  21. Kiliari T, Pashalidis I (2010) Simplified alpha-spectroscopic analysis of uranium in natural waters after its separation by cation-exchange. Radiat Measur 45:966–968

    Article  CAS  Google Scholar 

  22. Rutherford PM, Dudas MJ, Samek RA (1994) Environmental impacts of phosphogypsum. Sci Total Environ 149:1–38

    Article  CAS  Google Scholar 

  23. Canbaz B, Cam NF, Yaprak G, Candan O (2010) Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid. Turkey Radiat Prot Dosim 141:192–198

    Article  CAS  Google Scholar 

  24. Smith AL (1987) Radioactive-scale formation. J Petrol Technol 39:697–706

    Article  CAS  Google Scholar 

  25. Michael F, Parpottas Y, Tsertos H (2010) Gamma radiation measurements and dose rates in commonly used building materials in Cyprus. Radiat Prot Dosim 142:282–291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Pashalidis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liatsou, I., Pashalidis, I. Radium concentration in uranium-bearing rocks and minerals by radon emanation after acidic sample dissolution. J Radioanal Nucl Chem 309, 1327–1332 (2016). https://doi.org/10.1007/s10967-016-4737-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4737-1

Keywords

Navigation