Skip to main content
Log in

The formation of trinitite-like surrogate nuclear explosion debris (SNED) and extreme thermal fractionation of SRM-612 glass induced by high power CW CO2 laser irradiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We describe a new approach to the bench top production of surrogate nuclear explosion debris by employing high power continuous wave CO2 laser irradiation. High surface temperatures >2,500 K can be rapidly attained, allowing virtually any combination of materials to be fused into a glassy matrix that can display high levels of elemental fractionation. Examples of the laser fused glasses will be presented and compared to trinitite nuclear explosion glass along with the elemental fractionation effects that were induced in the NIST glass standard SRM-612 by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Carney KP, Finck MR, McGrath CA, Martin LR, Lewis RR (2014) The development of radioactive glass surrogates for fallout debris. J Radioanal Nucl Chem 299:363–372

    Article  CAS  Google Scholar 

  2. Harvey SD, Liezers M, Antolick KC, Garcia BJ, Sweet LE, Carman AJ, Eiden GC (2013) Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles. J Radioanal Nucl Chem 298:1885–1898

    Article  CAS  Google Scholar 

  3. Pravin PP, Semkow TM, Torres MA, Haines DK, Cooper JM, Rosenburg PM, Kitto ME (2006) Radioactivity in Trinitite six decades later. J Enviro Radioact 85:103–120

    Article  Google Scholar 

  4. Nygren U, Ramebäck H, Nilsson C (2007) Age determination of plutonium using inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 272:45–51

    Article  CAS  Google Scholar 

  5. Fahey AJ, Zeissler CJ, Newbury JD, Lindstrom RM (2010) Postdetonation nuclear debris for attribution. Proc Natl Acad Sci USA 107(47):20207–20212

    Article  CAS  Google Scholar 

  6. Bellucci JJ, Simonetti A (2012) Nuclear Forensics: searching for nuclear device debris in Trinitite-hosted inclusions. J Radioanal Nucl Chem 293:313–319

    Article  CAS  Google Scholar 

  7. Bellucci JJ, Wallace C, Koeman EC, Simonetti A, Burns PC, Kieser J, Port E, Walczak T (2012) Distribution and behavior of some radionuclides associated with the Trinity nuclear test. J Radioanal Nucl Chem 295:2049–2057

    Article  Google Scholar 

  8. Wallace C, Bellucci JJ, Simonetti A, Hainley T, Koeman EC, Burns PC (2013) A multi-method approach for the determination of radionuclide distribution in Trinitite. J Radioanal Nucl Chem 298:993–1003

    Article  CAS  Google Scholar 

  9. Bellucci JJ, Simonetti A, Wallace C, Koeman EC, Burns PC (2013) Isotopic fingerprinting of the world’s first nuclear device using post-detonation materials. Anal Chem 85(8):4195–4198

    Article  CAS  Google Scholar 

  10. Bellucci JJ, Simonetti A, Wallace C, Koeman EC, Burns PC (2013) Lead isotopic composition of Trinitite melt glass: evidence for the presence of Canadian industrial lead in the first atomic bomb test. Anal Chem 85(15):7588–7593

    Article  CAS  Google Scholar 

  11. IAEA (2005) Radiological conditions at the Former French Nuclear Test Sites in Algeria: preliminary assessment and recommendations. IAEA, Vienna, Radiological report series ISSN 1020-6566, STI/PUB/1215, ISBN 92-0-113304-9

  12. Pittauerová D, Kolb WM, Rosenstiel JC, Fischer HW (2010) Radioactivity in Trinitite: a review and new measurements. Proceedings of the 3rd European IRPA Congress, Helsinki, Finland

  13. Dai ZR, Crowhurst JC, Grant CD, Knight KB, Tang V, Chernov AA, Cook EG, Lotscher JP, Hutcheon ID (2013) Exploring high temperature phenomena related to post-detonation using an electric arc. J Appl Phys 114:204901. doi:10.1063/1.4829660

    Article  Google Scholar 

  14. Liezers M, Harvey SD, Eiden GC, Carman AJ (2014) Poster presentation generation and analysis of Surrogate Nuclear Explosion Debris using the ICP. Winter Plasma Conference, Amelia Island, Florida, 11–16 Jan 2014

  15. Jerome S, Leggitt J, Inn KGW (2012) Fresh, post-IND reference material based on glass. Presentation at the International Workshop on Certified Reference Materials for Nuclear Measurements, Saclay, France

  16. Ramirez SM, Diaz L, Camacho JJ (2013) Cw CO2-laser-induced formation of Fulgurite on Lime-pozzolan mortar. J Am Ceram Soc 96(9):2824–2830

    Article  Google Scholar 

  17. Koch J, Heiroth S, Lippert T, Günther D (2010) Femtosecond laser ablation: Visualization of the aerosol formation process by light scattering and shadow graphic imaging. Spectrochim Acta B 65(11):943–949

    Article  Google Scholar 

  18. Liu HC, Mao XL, Yoo JH, Russo RE (1999) Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon. Spectrochim Acta B 54(11):1607–1624

    Article  Google Scholar 

  19. Russo RE, Mao X, Liu H, Gonzalez J, Mao SS (2002) Laser ablation in analytical chemistry-a review. Talanta 57(3):425–451

    Article  CAS  Google Scholar 

  20. DeMaria AJ, Hennessey TV (2010) The CO2 laser: the workhorse of the laser material processing industry, SPIE Professional Magazine, http://spie.org/Documents/Membership/laser_co2_demaria_hennessey.pdf

  21. Lioy PJ, Weisel CP, Millette JR, Eisenreich S, Vallero D, Offenberg J, Buckley B, Turpin B, Zhong M, Cohen MD, Prophete C, Yang I, Stiles R, Chee G, Johnson W, Porcja R, Alimokhtari S, Hale RC, Weschler C, Chen LC (2002) Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in Lower Manhattan after the collapse of the WTC 11 September 2001. Environ Health Perspect 110(7):703–714

    Article  CAS  Google Scholar 

  22. McGee JK, Chen LC, Cohen MD, Chee GR, Prophete CM, Haykal-Coates N, Wasson SJ, Conner TL, Costa DL, Gavett SH (2003) Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ Health Perspect 111(7):972–980

    Article  CAS  Google Scholar 

  23. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429

    Article  CAS  Google Scholar 

  24. Lide DR (ed) (1997) CRC handbook of chemistry and physics. CRC Press, New York. ISBN 0-8493-0478-4

  25. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  CAS  Google Scholar 

  26. Freiling EC (1961) Radionuclide fractionation in bomb debris. Science 133:1991–1999

    Article  CAS  Google Scholar 

  27. Gibson TA (1968) Observed fractionation in ground level fallout from three nuclear cratering detonations. University of California, Lawrence Radiation Laboratory report: TID-4500 UC-35, San Diego

  28. Morely D, Izrael LA, Izrael YA (2002) Radioactive fallout after nuclear explosions and accidents. ISBN 0-080-43855-5, Elsevier Science Ltd

  29. Cassata WS, Prussin SG, Knight KB, Hutcheon ID, Isselhardt BH, Renne PR (2014) When the dust settles: stable xenon isotope ratio constraints on the formation of nuclear fallout. J Environ Radioact 137:88–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

My thanks to Dr. John McCloy at Washington State University, Pullman for bringing to our attention the CO2 laser Fulgurite article [16] that sparked this line of research. This work was funded by the Office of Defense Nuclear Nonproliferation Research and Development with the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC05-75RLO1830. The views, opinions and findings contained within this paper are those of the authors and should not be construed as an official position, policy or decision of the DOE unless designated by other documentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Liezers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liezers, M., Fahey, A.J., Carman, A.J. et al. The formation of trinitite-like surrogate nuclear explosion debris (SNED) and extreme thermal fractionation of SRM-612 glass induced by high power CW CO2 laser irradiation. J Radioanal Nucl Chem 304, 705–715 (2015). https://doi.org/10.1007/s10967-014-3895-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3895-2

Keywords

Navigation