Skip to main content
Log in

Age determination of plutonium using inductively coupled plasma mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The age of plutonium is defined as the time since the last separation of the plutonium isotopes from their daughter nuclides. In this paper, a method for age determination based on analysis of 241Pu/241Am and 240Pu/236Pu using ICP-SFMS is described. Separation of Pu and Am was performed using a solid phase extraction procedure including UTEVA, TEVA, TRU and Ln-resins. The procedure provided separation factors adequate for this purpose. Age determinations were performed on two plutonium reference solutions from the Institute for Reference Materials and Measurements, IRMM081 (239Pu) and IRMM083 (240Pu), on sediment from the Marshall Islands (reference material IAEA367) and on soil from the Trinity test site (Trinitite). The measured ages based on the 241Am/241Pu ratio corresponded well with the time since the last parent-daughter separations of all the materials. The ages derived from the 236U/240Pu ratio were in agreement for the IRMM materials, but for IAEA367 the determination of 236U was interfered by tailing from 238U, and for Trinitite the determined age was biased due to formation of 236U in the detonation of the “Gadget”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wallenius, G. Tamborini, L. Koch, Radiochim. Acta, 89 (2001) 55.

    Article  CAS  Google Scholar 

  2. M. Wallenius, K. Mayer, Fresenius J. Anal. Chem., 366 (2000) 234.

    Article  CAS  Google Scholar 

  3. M. Wallenius, Origin Determination of Reactor Produced Plutonium by Mass Spectrometric Techniques: Application to Nuclear Forensics Science and Safeguards, Academic Dissertation, University of Helsinki, Helsinki, Finland, 2001, ISBN 951-45-9707-9.

  4. S. Richter, A. Alonso, W. De Bolle, R. Wellum, P. D. P. Taylor, Intern. J. Mass Spectrom., 193 (1999) 9.

    Article  CAS  Google Scholar 

  5. D. L. Donohue, J. Alloys Comp., 271 (1998) 11.

    Article  Google Scholar 

  6. S. F. Boulyga, J. L. Matusevich, V. P. Mironov, V. P. Kudrjashov, L. Halicz, I. Segal, J. A. McLean, A. Montaser, J. S. Becker, J. Anal. At. Spectrom., 17 (2002) 958.

    Article  CAS  Google Scholar 

  7. S. F. Boulyga, J. S. Becker, J. Anal. At. Spectrom., 17 (2002) 1143.

    Article  CAS  Google Scholar 

  8. R. P. Keegan, R. J. Gehrke, Appl. Radiation Isotopes, 59 (2003) 137.

    Article  CAS  Google Scholar 

  9. D. West, A. C. Sherwood, Annal. Nucl. Energy, 8 (1981) 441.

    Article  CAS  Google Scholar 

  10. J. N. Smith, K. M. Ellis, K. Neas, S. Dahle, D. Matishov, Deep-Sea Res. II, 42 (1995) 1471.

    Article  CAS  Google Scholar 

  11. L. W. Cooper, J. M. Kelley, L. A. Bond, K. A. Orlandini, J. M. Grebmeier, Marine Chem., 69 (2000) 253.

    Article  CAS  Google Scholar 

  12. J. M. Kelley, L. A. Bond, T. M. Beasley, Sci. Total Environ., 237/238 (1999) 483.

    Article  CAS  Google Scholar 

  13. M. E. Ketterer, K. M. Hafner, J. W. Mietelski, J. Environ. Radioact., 73 (2004) 183.

    Article  CAS  Google Scholar 

  14. M. E. Ketterer, K. M. Hafer, C. L. Link, D. Kolwaite, J. Wilson, J. W. Mietelski, J. Anal. At. Spectrom., 19 (2004) 241.

    Article  CAS  Google Scholar 

  15. M. Agarande, S. Benzoubir, P. Bouisset, D. Calmet, Appl. Radiation Isotopes, 55 (2001) 161.

    Article  CAS  Google Scholar 

  16. S. F. Boulyga, D. Desideri, M. A. Meli, C. Testa, J. S. Becker, Intern. J. Mass Spectrom., 226 (2003) 329.

    Article  CAS  Google Scholar 

  17. F. L. Moore, J. E. Hudgens Jr., Anal. Chem., 29 (1957) 1767.

    Article  CAS  Google Scholar 

  18. E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, S. L. Maxwell III, M. R. Nelson, Anal. Chim. Acta, 310 (1995) 63.

    Article  CAS  Google Scholar 

  19. U. Nygren, I. Rodushkin, C. Nilsson, D. C. Baxter, J. Anal. At. Spectrom., 18 (2003) 1426.

    Article  CAS  Google Scholar 

  20. P. K. Appelblad, D. C. Baxter, J. Anal. At. Spectrom., 15 (2000) 557.

    Article  CAS  Google Scholar 

  21. A. Sjögren, P. K. Appelblad, A. Tovedal, H. Ramebäck, J. Anal. At. Spectrom., 20 (2005) 320.

    Article  CAS  Google Scholar 

  22. Guide to the Expression of Uncertainty in Measurement, International Organisation for Standardisation, ISO-GUM, Geneva, Switzerland, 1995, ISBN 92-67-10188-9.

  23. Evaluated Nuclear Structure Data File (ENSDF), National Nuclear Data Center (NNDC), Brookhaven National Laboratory, 2005.

  24. M. Berglund, Institute for Reference Material and Measurement, Geel, Belgium, personal communication.

  25. United States Nuclear Tests; July 1945 through September 1992, DOE/NV-209-REV 15, United States Department of Energy, Nevada Operations Office, Las Vegas, Nevada, December 2000.

  26. S. Ballestra, J. J. Lopez, J. Gastaud, D. Vas, V. Noshkin, Report on the Intercomparison Run IAEA-376, Radionuclides in Pacific Ocean Sediment, IAEA/AL/046, International Atomic Energy Agency, Monaco, 1991.

    Google Scholar 

  27. H. Diamond, P. R. Fields, C. S. Stevens, M. H. Studier, S. M. Fried, M. G. Inghram, D. C. Hess, G. L. Pyle, J. F. Mech, W. M. Manning, A. Ghiorso, S. G. Thompson, G. H. Higgins, G. T. Seaborg, C. I. Browne, H. L. Smith, R. W. Spence, Phys. Rev., 119 (1960) 2000.

    Article  CAS  Google Scholar 

  28. L. E. De Geer, Sci. Global Secur., 2 (1991) 351.

    Google Scholar 

  29. M. C. Carter, A. A. Moghissi, Health Phys., 33 (1977) 55.

    Article  CAS  Google Scholar 

  30. P. P. Parekh, T. M. Semkov, M. A. Torres, D. K. Haines, J. M. Cooper, P. M. Rosenberg, M. E. Kitto, J. Environ. Radioact., 85 (2006) 103.

    Article  CAS  Google Scholar 

  31. R. L. Douglas, Levels and Distribution of Environmental Plutonium Around the Trinity Site, ORP/LV-78-3, U. S. Environmental Protection Agency, Office of Radiation Programs, Las Vegas Facility, Las Vegas, Nevada, October, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nygren, U., Ramebäck, H. & Nilsson, C. Age determination of plutonium using inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 272, 45–51 (2007). https://doi.org/10.1007/s10967-006-6780-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-006-6780-9

Keywords

Navigation