Skip to main content
Log in

Production of cerium-141 using ceria and nanoceria powder: a potential radioisotope for simultaneous therapeutic and diagnostic applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Cerium-141 [T 1/2 = 32.5 days, β 1 = 580.4 keV (30 %), β 2 = 435.0 keV (70 %), γ = 145.4 keV (48 %)], has been introduced as a radionuclide for therapy while can be used in diagnosis as well. In this study, nuclear model calculation on 141Ce production was investigated via the 140Ce(d,p)141Ce, 142Ce(d,dn)141Ce, 141Pr(n,p)141Ce, and 140Ce(n,γ)141Ce nuclear reactions. 140Ce was irradiated by thermal neutron at the Tehran Research Reactor according to the 140Ce(n,γ)141Ce reaction. In addition, the obtained activity of the produced 141Ce was compared with the theoretical calculations. The results showed that the end of bombardment activities of 141Ce is 631.64 MBq theoretically and 611.60 MBq experimentally for ceria powder. The activities of similar samples of ceria (CeO2) powder in two forms of nano-particles (nanoceria) and bulk were compared after bombardment by thermal neutrons. The results showed that activities of nanoceria were less than the bulk form of ceria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vucina J, Han R (2001) Use of radionuclides in therapy. Med Pregl 54:245–250

    CAS  Google Scholar 

  2. Srivastava SC (2012) Paving the way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven National Laboratory. Semin Nucl Med 42:151–163

    Article  Google Scholar 

  3. Yang L, Sundaresan G, Sun M, Jose P, Hoffman D, McDonagh PR, Lamichhane N, Cutler CS, Perez JM, Zweit J (2013) Intrinsically radiolabeled multifunctional cerium oxide nanoparticles for in vivo studies. J Mater Chem B 1:1421–1431

    Article  CAS  Google Scholar 

  4. Sadeghi M, Bakht MK, Mokhtari L (2011) Practicality of the cyclotron production of radiolanthanide 142Pr: a potential for therapeutic applications and biodistribution studies. J Radioanal Nucl Chem 288:937–942

    Article  CAS  Google Scholar 

  5. Bakht MK, Hosseini V, Honarpisheh H (2013) Radiolabeled nanoceria probes may reduce oxidative damages and risk of cancer: a hypothesis for radioisotope-based imaging procedures. Med Hypotheses 81:1164–1168

    Article  CAS  Google Scholar 

  6. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312

    Article  CAS  Google Scholar 

  7. Bakht MK, Sadeghi M, Tenreiro C (2012) A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of 137mCe. J Radioanal Nucl Chem 292:53–59

    Article  CAS  Google Scholar 

  8. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P et al (2005) Electron localization determines defect formation on ceria substrates. Science 29:752–755

    Article  Google Scholar 

  9. Mioduski T, Hao DA, Luan HH (1989) Separation of cerium from other lanthanides by leaching with nitric acid rare earth(III) hydroxide-cerium(IV) oxide mixtures. J Radioanal Nucl Chem 132:105–113

    Article  CAS  Google Scholar 

  10. Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709

    Article  CAS  Google Scholar 

  11. Campbell CT, Peden CHF (2005) Oxygen vacancies and catalysis on ceria surfaces. Science 309:713–714

    Article  CAS  Google Scholar 

  12. Sadeghi M, Jabal-Ameli J, Ahmadi SJ, Sadjadi SS, Bakht MK (2012) Production of cationic 198Au3+ and nonionic 198Au0 for radionuclide therapy applications via the natAu(n, y)198Au reaction. J Radioanal Nucl Chem 293:45–49

    Article  CAS  Google Scholar 

  13. Simonelli F, Marmorato P, Abbas K, Ponti J, Kozempel J, Holzwarth U, Franchini F, Rossi F (2011) Cyclotron production of radioactive CeO2 nanoparticles and their application for in vitro uptake studies. IEEE T Nanobiosci 10:44–50

    Article  Google Scholar 

  14. Leprêtre A, Beil H, Bergére R, Carlos P, Fagot J, De Miniac A, Veyssiére A, Miyase H (1976) A study of the giant dipole resonance in doubly even tellurium and cerium isotopes. Nucl Phys A 258:350–364

    Article  Google Scholar 

  15. Csikai J, Fominich VI, Lakatos T (1968) Cross-sections for the reactions 141Pr(n, p)141Ce, 141Pr(n, t)139Ce, 142Ce(n,2n)141Ce and 140Ce(n,2n)139Ce. Acta Physica 24:233–236

    Article  CAS  Google Scholar 

  16. Koning AJ, Hilairey S, Duijvestijn M (2009) TALYS-1.4: A nuclear reaction program. User manual, NRG, Petten, The Netherlands. http://www.talys.eu/download-talys. Accessed 22 Dec 2009

  17. Koning AJ, Delaroche JP (2003) Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A 713:231–310

    Article  Google Scholar 

  18. Maiti M, Lahiri S (2009) Theoretical approach to explore the production routes of astatine radionuclides. Phys Rev C 79:24611–24620

    Article  Google Scholar 

  19. Watanabe S (1958) High energy scattering of deuterons by complex nuclei. Nucl Phys 8:484–492

    Article  CAS  Google Scholar 

  20. Gilbert A, Cameron AGW (1965) A composite nuclear-level density formula with shell corrections. Can J Phys 43:1446–1496

    Article  CAS  Google Scholar 

  21. Dilg W, Schantl W, Vonach H, Uhl M (1973) Level density parameters for the back-shifted Fermi gas model in the mass range 40\A\250. Nucl Phys A 217:269–298

    Article  CAS  Google Scholar 

  22. Hauser W, Feshbach H (1952) The inelastic scattering of neutrons. Phys Rev C 87:366–373

    Article  CAS  Google Scholar 

  23. Kalbach C (2005) Pre-equilibrium reactions with complex particle channels. Phys Rev C 71:0346061–03460623

    Article  Google Scholar 

  24. Sadeghi M, Zandi N, Bakhtiari M (2012) Nuclear model calculation for cyclotron production of 61Cu as a PET imaging. J Radioanal Nucl Chem 292:777–783

    Article  CAS  Google Scholar 

  25. Sadeghi M, Enferadi M, Aboudzadeh M, Sarabadani P (2010) Production of 122Sb for the study of environmental pollution. J Radioanal Nucl Chem 287:585–589

    Article  Google Scholar 

  26. Bakhtiari M, Sadeghi M, Bakht M, Ghafoori-Fard H (2013) Nuclear model calculations of charged-particle-induced reaction cross section data for the production of the radiohalogen 34Clm. Phys Rev C 87:034621

    Article  Google Scholar 

  27. Koning AJ, Rochman D (2011) TALYS-based evaluated nuclear data library. Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands. http://www.talys.eu/tendl-2011. Accessed 29 Dec 2011

  28. IAEA-TECDOC-1340 (2003) Manual for reactor produced radioisotopes. IAEA, VIENNA, 2003 ISBN: 92–0–101103–2, Accessed Jan 2003

  29. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  CAS  Google Scholar 

  30. Ziegler JF, Biersack JP, Littmark U (2011) The code of SRIM The stopping and range of ions in matter. IBM-Research, New York

    Google Scholar 

  31. Koning AJ, Rochman, D (2013) ENDF Evaluated Nuclear Data File (ENDF): https://www-nds.iaea.org/exfor/endf.htm. Database Version of March 14, 2014

Download references

Acknowledgments

The authors are thankful to Mr. Mohamadreza K. Bakht for his suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Soltani or Mahdi Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, F., Samani, A.B., Sadeghi, M. et al. Production of cerium-141 using ceria and nanoceria powder: a potential radioisotope for simultaneous therapeutic and diagnostic applications. J Radioanal Nucl Chem 303, 385–391 (2015). https://doi.org/10.1007/s10967-014-3335-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3335-3

Keywords

Navigation