Skip to main content
Log in

Production of cationic 198Au3+ and nonionic 198Au0 for radionuclide therapy applications via the natAu(n,γ)198Au reaction

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

198Au (βmax = 0.96 MeV (98.6 %), γmax = 0.412 MeV (95.5 %) and T 1/2  = 2.7 days) is a radionuclide with very appealing characteristics. 198Au has been widely used to treat the uterus, bladder, cervix, prostate, melanoma, breast, skin and other cancers. In the present study, cationic 198Au+3 and nonionic 198Au0 are prepared following thermal neutron irradiation of commercially available natural gold compounds in Tehran Research Reactor via the natAu(n,γ)198Au reaction. The prospects in the production of pure 198Au0 and 198Au+3 for radionuclide therapy are discussed and effect of reduction on the activity of radioactive gold is evaluated. Au0 particles were synthesized via NaBH4 reduction of aqueous solutions of hydrogen tetrachloroaurate trihydrate. Then two quartz tubes were charged with cationic 198Au3+ and nonionic 198Au0. After irradiation by thermal neutrons, the samples were analyzed for a period of 1 month by liquid scintillation counter and high purity germanium detector. As a result, natAu3+ reduction process had no significant effect on the activity of the 198Au sample. In conclusions, natural gold thermal neutron activation cross section is reasonably high for medical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bakht MK, Sadeghi M, Tenreiro C (2012) A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of 137mCe. J Radioanal Nucl Chem 292:53–59

    Article  CAS  Google Scholar 

  2. Sadeghi M, Bakht MK, Mokhtari L (2011) Practicality of the cyclotron production of radiolanthanide142Pr: a potential for therapeutic applications and biodistribution studies. J Radioanal Nucl Chem 288:937–942

    Article  CAS  Google Scholar 

  3. Bakht MK, Sadeghi M (2011) Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann Nucl Med 25:529–535

    Article  Google Scholar 

  4. Spillane T, Raiola F, Zeng F (2007) The 198Au half-life in the metal Au. Eur Phys J A 31:203–205

    Article  CAS  Google Scholar 

  5. Abzouzi A, Antony MS, Hachem A, Ndocko Ndongue VB (1990) Precision measurements of the half-life of 60mCo, 79mSe, 104mRh, 149Nd, 176mLu, 177Lu and 198Au. J Radioanal Nucl Chem 144:359–365

    Article  CAS  Google Scholar 

  6. Gonzales ER, Garcia SR, Mahan C, Hang W (2005) Evaluation of mass spectrometry and radiation detection for the analysis of radionuclides. J Radioanal Nucl Chem 263:457–465

    CAS  Google Scholar 

  7. Jiang J, Liu C, Zhou W, Gao H (2002) The extraction of low-concentrations of gold(I) with 198Au as a radiotracer. J Radioanal Nucl Chem 254:405–408

    Article  CAS  Google Scholar 

  8. Myers W, Colmery B (1952) Radioactive Au-198 in gold seeds for cancer therapy. Cancer Res 12:63–285

    Google Scholar 

  9. Henschke UK (1953) Radiogold seeds for cancer therapy. Nucleonics 11:46–48

    Google Scholar 

  10. Cohen J, Sklaroff D (1955) Intraperitoneal radioactive gold in ovarian cancer. Obstet Gynecol 6:68–76

    CAS  Google Scholar 

  11. Wheeler H, Jaques W, Botsford T (1955) Experiences with the use of radioactive colloidal gold in the treatment of cancer. Ann Surg 141:208–214

    Article  CAS  Google Scholar 

  12. Karvat A, Duzenli C, Paton K, Pickles T (2001) The treatment of choroidal melanoma with 198Au plaque brachytherapy. Radiother Oncol 59:153–156

    Article  CAS  Google Scholar 

  13. Schulz C, Niederer C, Andres C (2000) Endovascular irradiation from beta-particle-emitting gold stents results in increased neointima formation in a porcine restenosis model. J Am Heart Assoc 101:1970–1978

    CAS  Google Scholar 

  14. Katti KV, Kannan R, Katti K, Kattumori V, Pandrapraganda R, Rahing V, Cutler C, Boote EJ, Casteel SW, Smith CJ, Robertson JD, Jurrison SS (2006) Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czech J Phys 56:23–34

    Google Scholar 

  15. Khan MK, Minc LD, Nigavekar SS, Kariapper MS, Nair BM, Schipper M, Cook AC, Lesniak WG, Balogh LP (2008) Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine 4:57–69

    Article  CAS  Google Scholar 

  16. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62:346–361

    Article  CAS  Google Scholar 

  17. Chanda N, Kan P, Watkinson L, Shukla R, Zambre A, Carmack T, Engelbrecht H, Lever J, Katti K, Fent G, Casteel S, Smith CJ, Miller W, Jurisson S, Boote E, Robertson D, Cutler C, Dobrovolskaia M, Kannan R, Katti KV (2010) Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine 6:201–209

    Article  CAS  Google Scholar 

  18. Kannan R, Zambre A, Chanda N, Kulkarni R, Shukla R, Katti K, Upendran A, Cutler C, Boote E, Katti KV (2012) Functionalized radioactive gold nanoparticles in tumor therapy. Wiley Interdiscip Rev 4:42–51

    CAS  Google Scholar 

  19. IAEA-TECDOC-1340 (2003) Manual for reactor produced radioisotopes. IAEA, VIENNA, 2003 ISBN: 92–0–101103–2, ISSN 1011–4289. Accessed Jan 2003

  20. Cruz FP, Moreno AJ, Nassiff SJ (1996) Cross sections and isomeric ratios in 197Au(α,2pn)198(m,g)Au reactions. J Radioanal Nucl Chem 207:45–52

    Article  Google Scholar 

  21. Qaim SM (2010) Radiochemical determination of nuclear data for theory and applications. J Radioanal Nucl Chem 284:489–505

    Article  CAS  Google Scholar 

  22. Koning AJ, Hilairey S, Duijvestijn M (2009) TALYS-1.2: a nuclear reaction program. User manual, NRG, The Netherlands. http://www.talys.eu/download-talys. Accessed 22 Dec 2009

  23. Koning AJ, Rochman D (2010) TENDL-2010: TALYS-based evaluated nuclear data library. Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands. http://www.talys.eu/tendl-2010. Accessed Dec 2010

  24. Sublet JC, Packer LW, Kopecky1 J, Forrest RA, Koning AJ, Rochman DA (2010) The European activation file: EAF-2010 neutron-induced cross section library. http://www.ccfe.ac.uk/EASY-ata/eaf2010/Docs/EAF_n_Cross_sections_2010.pdf. Accessed Apr 2010

  25. Experimental Nuclear Reaction Data (2011) EXFOR: database version of October 03, 2011. http://www-nds.iaea.org/exfor/exfor.htm. Accessed Oct 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, M., Jabal-Ameli, H., Ahmadi, S.J. et al. Production of cationic 198Au3+ and nonionic 198Au0 for radionuclide therapy applications via the natAu(n,γ)198Au reaction. J Radioanal Nucl Chem 293, 45–49 (2012). https://doi.org/10.1007/s10967-012-1772-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1772-4

Keywords

Navigation