Skip to main content
Log in

Removal of heavy metals from aqueous solutions by Cercis siliquastrum L.

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study the ability of Cercis siliquastrum L. leaves for the adsorption of Pb(II), Cu(II) and Ni(II) ions were studied. The effects of different parameters such as contact time of biosorbent and sorbents, pH of metal solution, and initial metal ion concentration on the biosorption were investigated. The maximum sorption of all metals were carried out in pH 4. Increasing the initial metal concentration in lower values caused a steep growth in biosorption, which was not observed in higher values. In the optimum sorption condition, the affinity of the leaves to metal ions was in the order of Pb(II)>Cu(II)>Ni(II). The biosorption of the metal ions were studied by Langmuir and Freundlich adsorption isotherm models. It was observed that the data were fitted very well to Langmuir adsorption isotherm model. According to the obtained correlation coefficient values, Freundlich model could predict Pb(II) and Cu(II) adsorption adequately but it was not suitable for Ni(II) sorption. Experimental data were exploited for kinetic evaluations related to the sorption process. According to our results, second-order kinetic provided a good description of biosorption for the tested metals with regression correlation coefficients more than 0.9998 for all the sorbate-sorbent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Cheung, C.F. Porter and G. McKay, Sep. Purif. Technol. 19 (1997) 55.

    Google Scholar 

  2. S.P.K. Sternberg, R.W. Dom, Biores. Technol. 81 (2002) 249.

    CAS  Google Scholar 

  3. C. Huang, C.P. Huang, Water Res. 30 (1996) 1985.

    CAS  Google Scholar 

  4. J.T. Matheickal, Q. Yu and J. Feltham, Environ. Technol. 18 (1987) 25.

    Google Scholar 

  5. E. Luef, T. Prey and C.P. Kubicek, Appl. Microbiol. Biot. 34 (1991) 688.

    CAS  Google Scholar 

  6. M. Nourbakhsh, Y. Sag, D. Ozer, Z. Aksu, T. Katsal and A. Calgar, Process Biochem. 29 (1994) 1.

    CAS  Google Scholar 

  7. P. Puranik, K.M. Paknikar, Biores. Technol. 70 (1999) 269.

    CAS  Google Scholar 

  8. B. Verma, N.P. Shukla, Indian J. Environ. Health 42 (2000) 145.

    CAS  Google Scholar 

  9. R. Say, A. Denizli and M.Y. Arica, Biores. Technol. 76 (2001) 67.

    CAS  Google Scholar 

  10. R. Apiratikul, T.F. Marhaba, S. Wattanachira and P. Pavasant, J. Science Technol. 26 (2004) 199.

    Google Scholar 

  11. N.R. Bishnoi, M. Bajaj, N. Sharma and A. Gupta, Biores. Technol. 91 (2004) 305.

    CAS  Google Scholar 

  12. P. Lodeiro, B. Cordero, J.L. Barriadh, R. Herrero and M.E.S. deVicente, Biores. Technol. 96 (2005) 1796.

    CAS  Google Scholar 

  13. K. Chandrasekhar, C.T. Kamala, N.S. Chary and Y. Anjanuyulu, Int. J. Miner. Process. 68 (2003) 37.

    Google Scholar 

  14. Y.S. Ho, C.T. Huang and H.W. Huang, Proc. Biochem. 37 (2002) 1421.

    CAS  Google Scholar 

  15. M. I. Kandah, Chem. Eng. Technol. 25 (2002) 921.

    CAS  Google Scholar 

  16. R. Naseem, S.S. Tahir, Water Res. 35 (2001) 3982.

    CAS  Google Scholar 

  17. F.F.O. Orumwense, J. Chem. Technol. Biotechnol. 65 (1996) 363.

    CAS  Google Scholar 

  18. A. Kapoor, T. Viraraghavan and D. Roy Cullimore, Biores. Technol. 70 (1999) 95.

    CAS  Google Scholar 

  19. F.A. Abu Al-Rub, M.H. El-Naas, F. Benyahia and I. Ashour, Proc. Biochem. 39 (2004) 1767.

    CAS  Google Scholar 

  20. G. Cetinkaya Donmez, Z. Aksu, A. Ozturk and T. Kutsal, Proc. Biochem. 34 (1999) 885.

    Google Scholar 

  21. D.Y. Cho, S. Lee, S. Park and A. Chung, J. Environ. Sci. Health A 29 (1994) 389.

    Google Scholar 

  22. R. Axtell Nicholas, P.K. Sternberg Steven and K. Claussen, Biores. Technol. 89 (2003) 41.

    CAS  Google Scholar 

  23. S.S. Ahluwalia, D. Goyal, Biores. Technol. 98 (2007) 2243.

    CAS  Google Scholar 

  24. V. Mozaffarian, Trees and Shrubs. Farhang Moaser Publisher, (2004) Tehran.

    Google Scholar 

  25. J.M. Tobin, D.G. Cooper and R.J. Neufeld, Appl. Environ. Microbiol. 47 (1984) 821.

    CAS  Google Scholar 

  26. A. Saeed, M.W. Akhter and M. Iqbal, Sep. Purif. Technol. 45 (2005) 25.

    CAS  Google Scholar 

  27. S. Schiewer, B. Volesky, in: Lovely D.R. (Ed.), Environmental Microbe-Metal Interactions, ASM Press, (2000) Washington DC, Chapter 14.

    Google Scholar 

  28. Y.S. Ho, C.T. Huang and H.W. Huang, Proc. Biochem. 37 (2002) 1421.

    CAS  Google Scholar 

  29. S. Al-Asheh, F. Banat, R. Al-Omari and Z. Duvunjak, Chemosphere 41 (2000) 659.

    CAS  Google Scholar 

  30. W. Jianlong, Z. Zinmin, D. Decai and Z. Ding, J. Biotechnol. 87 (2001) 273.

    CAS  Google Scholar 

  31. A. Saeed, M.W. Akhter and M. Iqbal, J. Hazard. Mater. 117 (2005) 65.

    CAS  Google Scholar 

  32. A.C.A. da Costa, S.G.F. Leite, Biotechnol. Lett. 13 (1991) 559.

    Google Scholar 

  33. Y.S. Ho, D.A.J. Wase and C.F. Forster, Environ. Technol. 13 (1996) 925.

    Google Scholar 

  34. N. Unlu, M. Ersoz, Sep. Purif. Technol. 52 (2007) 461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Salehi.

Additional information

This article is dedicated to Professor Habib Firouzabadi who actively participated in training of the new generation of scinetists in Iran on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi, P., Asghari, B. & Mohammadi, F. Removal of heavy metals from aqueous solutions by Cercis siliquastrum L.. JICS 5 (Suppl 1), S80–S86 (2008). https://doi.org/10.1007/BF03246493

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03246493

Keywords

Navigation