Skip to main content
Log in

Adsorptive removal of uranyl ions in aqueous solution using hydrothermal carbon spheres functionalized with 4-aminoacetophenone oxime group

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Hydrothermal carbon spheres (HCSs) functionalized with 4-aminoacetophenone oxime group (HCSs-oxime) were prepared by a grafting method and explored to adsorption of uranyl ions from aqueous solution. The results of FT-IR, elemental analysis and zeta potential indicate a successfully modification with oxime group. The adsorbent shows an excellent adsorption capacity (Langmuir, q m  = 588.2 mg g−1) and quick adsorption kinetic (equilibrium time of approximately 60 min) at optimal pH of 6.0. The adsorptive selectivity for uranyl ions has been also great improved in present with various co-existing ions. Overall, HCSs-oxime is a potentially promising material for selective removal of uranium in the contaminated solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Liu J, Zhao C, Zhang Z et al (2016) Fluorine effects on U(VI) sorption by hydroxyapatite. Chem Eng J 288:505–515

    Article  CAS  Google Scholar 

  2. Reinoso-Maset E, Ly J (2016) Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model. J Environ Radioact 157:136–148

    Article  CAS  Google Scholar 

  3. Shao L, Wang X, Ren Y et al (2016) Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal. Chem Eng J 286:311–319

    Article  CAS  Google Scholar 

  4. Zhou L, Wang Y, Zou H et al (2016) Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. J Radioanal Nucl Chem 307(1):635–644

    Article  CAS  Google Scholar 

  5. Hoyer M, Zabelt D, Steudtner R et al (2014) Influence of speciation during membrane treatment of uranium contaminated water. Sep Purif Technol 132:413–421

    Article  CAS  Google Scholar 

  6. Tan L, Zhang X, Liu Q et al (2015) Preparation of magnetic core–shell iron oxide@silica@nickel–ethylene glycol microspheres for highly efficient sorption of uranium(VI). Dalton Trans 44:6909–6917

    Article  CAS  Google Scholar 

  7. Mishra S, Dwivedi J, Kumar A et al (2015) Studies on salophen anchored micro/meso porous activated carbon fibres for the removal and recovery of uranium. RSC Adv 5:33023–33036

    Article  CAS  Google Scholar 

  8. Wang YL, Song LJ, Zhu L et al (2014) Removal of uranium(VI) from aqueous solution using iminodiacetic acid derivative functionalized SBA-15 as adsorbents. Dalton Trans 43:3739–3749

    Article  CAS  Google Scholar 

  9. Zhang ZB, Yu XF, Cao XH et al (2014) Adsorption of U(VI) from aqueous solution by sulfonated ordered mesoporous carbon. J Radioanal Nucl Chem 301:821–830

    Article  CAS  Google Scholar 

  10. Chen S, Hong J, Yang H et al (2013) Adsorption of uranium(VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126:253–258

    Article  CAS  Google Scholar 

  11. Yan H, Bai J, Chen X et al (2013) High U(VI) adsorption capacity by mesoporous Mg(OH)2 deriving from MgO hydrolysis. RSC Adv 3:23278

    Article  CAS  Google Scholar 

  12. Cao Q, Liu Y, Wang C et al (2013) Phosphorus-modified poly(styrene-co-divinylbenzene)-PAMAM chelating resin for the adsorption of uranium(VI) in aqueous. J Hazard Mater 263(Pt 2):311–321

    Article  CAS  Google Scholar 

  13. Wang Z, Zachara JM, Shang J et al (2014) Investigation of U(VI) adsorption in quartz–chlorite mineral mixtures. Environ Sci Technol 48:7766–7773

    Article  CAS  Google Scholar 

  14. Olivelli MS, Curutchet GA, Torres Sánchez RM (2013) Uranium uptake by montmorillonite–biomass complexes. Ind Eng Chem Res 52:2273–2279

    Article  CAS  Google Scholar 

  15. Zhang ZB, Zhou ZW, Cao XH et al (2013) Removal of uranium(VI) from aqueous solutions by new phosphorus-containing carbon spheres synthesized via one-step hydrothermal carbonization of glucose in the presence of phosphoric acid. J Radioanal Nucl Chem 299:1479–1487

    Article  Google Scholar 

  16. Mi Y, Hu W, Dan Y et al (2008) Synthesis of carbon microspheres by a glucose hydrothermal method. Mater Lett 62:1194–1196

    Article  CAS  Google Scholar 

  17. Yao C, Shin Y, Wang LQ et al (2007) Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C 111:15141–15145

    Article  CAS  Google Scholar 

  18. Zhang ZB, Nie WB, Li Q et al (2013) Removal of uranium(VI) from aqueous solutions by carboxyl-rich hydrothermal carbon spheres through low-temperature heat treatment in air. J Radioanal Nucl Chem 298:361–368

    Article  CAS  Google Scholar 

  19. Yu XF, Liu YH, Zhou ZW et al (2014) Adsorptive removal of U(VI) from aqueous solution by hydrothermal carbon spheres with phosphate group. J Radioanal Nucl Chem 300:1235–1244

    Article  CAS  Google Scholar 

  20. Geng J, Ma L, Wang H et al (2012) Amidoxime-grafted hydrothermal carbon microspheres for highly selective separation of uranium. J Nanosci Nanotechnol 12:7354–7363

    Article  CAS  Google Scholar 

  21. Zhao Y, Wang X, Li J et al (2015) Amidoxime functionalization of mesoporous silica and its high removal of U(VI). Polym Chem 6:5376–5384

    Article  CAS  Google Scholar 

  22. Zhang Z, Dong Z, Dai Y et al (2016) Amidoxime-functionalized hydrothermal carbon materials for uranium removal from aqueous solution. RSC Adv 6:102462–102471

    Article  CAS  Google Scholar 

  23. Zou YD, Cao XH, Luo XP et al (2015) Recycle of U(VI) from aqueous solution by situ phosphorylation mesoporous carbon. J Radioanal Nucl Chem 306:515–525

    Article  CAS  Google Scholar 

  24. Song Q, Ma L, Liu J et al (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299

    Article  CAS  Google Scholar 

  25. Aakeröy CB, Beatty AM, Leinen DS (2001) Syntheses and crystal structures of new extended building blocks for crystal engineering: (pyridylmethylene)aminoacetophenone oxime ligands. Cryst Growth Des 1:47–52

    Article  Google Scholar 

  26. Nie BW, Zhang ZB, Cao XH et al (2013) Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 295:663–670

    Article  CAS  Google Scholar 

  27. Tripathi A, Melo JS, D’Souza SF (2013) Uranium(VI) recovery from aqueous medium using novel floating macroporous alginate–agarose–magnetite cryobeads. J Hazard Mater 246:87–95

    Article  Google Scholar 

  28. Zare F, Ghaedi M, Daneshfar A et al (2015) Efficient removal of radioactive uranium from solvent phase using AgOH–MWCNTs nanoparticles: kinetic and thermodynamic study. Chem Eng J 273:296–306

    Article  CAS  Google Scholar 

  29. Chen Z, Ma L, Li S et al (2011) Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Appl Surf Sci 257:8686–8691

    Article  CAS  Google Scholar 

  30. Shen H, Pan S, Zhang Y et al (2012) A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu(II), Cr(VI) co-existing water system. Chem Eng J 183:180–191

    Article  CAS  Google Scholar 

  31. He L, Dumée LF, Feng C et al (2015) Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity. Desalination 365:126–135

    Article  CAS  Google Scholar 

  32. Wang Y, Gu Z, Yang J et al (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20

    Article  CAS  Google Scholar 

  33. Tian G, Geng J, Jin Y et al (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

  34. Zhao Y, Li J, Zhang S et al (2014) Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI). RSC Adv 4:32710–32717

    Article  CAS  Google Scholar 

  35. Li B, Ma L, Tian Y et al (2014) A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium. J Hazard Mater 271:41–49

    Article  CAS  Google Scholar 

  36. Yuan D, Chen L, Xiong X et al (2016) Removal of uranium(VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE. Chem Eng J 285:358–367

    Article  CAS  Google Scholar 

  37. Zhang S, Zhao X, Li B et al (2016) “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition. J Hazard Mater 314:95–104

    Article  CAS  Google Scholar 

  38. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zero valent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  39. Pillewan P, Mukherjee S, Roychowdhury T et al (2011) Removal of As(III) and As(V) from water by copper oxide incorporated mesoporous alumina. J Hazard Mater 186:367–375

    Article  CAS  Google Scholar 

  40. Budnyak TM, Strizhak AV, Gładysz-Płaska A et al (2016) Silica with immobilized phosphinic acid-derivative for uranium extraction. J Hazard Mater 314:326–340

    Article  CAS  Google Scholar 

  41. Zhang X, Jiao C, Wang J et al (2012) Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem Eng J 198:412–419

    Article  Google Scholar 

  42. Gunathilake C, Górka J, Dai S et al (2015) Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J Mater Chem A 3:11650–11659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21561002, 21301028, 11475044, 41461070, 21401022), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT13054), the Science and Technology Support Program of Jiangxi Province (Grant Nos. 20141BBG70001, 20151BBG70010), the Advanced Science and Technology Innovation Team Program of Jiangxi Province (Grant No. 20142BCB24006), the Innovation Fund of Graduate Student (DHYC-2016010), and the Innovation Team Program of Jiangxi Provincial Department of Science and Technology (Grant No. 2014BCB24006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Zhang or Yunhai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Wang, Y., Zhao, W. et al. Adsorptive removal of uranyl ions in aqueous solution using hydrothermal carbon spheres functionalized with 4-aminoacetophenone oxime group. J Radioanal Nucl Chem 312, 187–198 (2017). https://doi.org/10.1007/s10967-017-5209-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5209-y

Keywords

Navigation