Skip to main content
Log in

Immobilization of uranium(VI) onto Mg2Al layered double hydroxide: role of key geochemical parameters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the sorption of U(VI) from aqueous solution on Mg2Al layered double hydroxide (Mg2Al LDH) was studied as a function of various water quality parameters such as contact time, pH, ionic strength, soil fulvic acid (FA), solid content and temperature by using a batch technique. The sorption of U(VI) on Mg2Al LDH was dependent on pH. The presence of FA increased U(VI) sorption at low pH, whereas decreased U(VI) sorption at high pH. Both kinetics and thermodynamic parameters of the sorption process were evaluated. It was found that the pseudo-second-order model was more suitable for our experiment. The Langmuir model fitted the sorption isotherms of U(VI) better than the Freundlich and D-R model at three different temperatures of 298, 303 and 313 K. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were calculated from the temperature dependent sorption isotherms, and the results suggested that U(VI) sorption was a spontaneous and endothermic process. The results demonstrate that Mg2Al LDH is a promising sorbent material for the preconcentration and separation of uranium pollution from large volumes of aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hyun SP, Cho YH, Hahn PS, Kim SJ (2001) J Radioanal Nucl Chem 250:55–62

    Article  CAS  Google Scholar 

  2. Akyil S, Aslani MAA, Eral M (2003) J Radioanal Nucl Chem 256:45–51

    Article  CAS  Google Scholar 

  3. Sylwester ER, Hudson EA, Allen PG (2000) Geochim Cosmochim Acta 64:2431–2438

    Article  CAS  Google Scholar 

  4. Liao X, Lu Z, Xu D, Liu X, Shi B (2004) Environ Sci Technol 38:324–328

    Article  CAS  Google Scholar 

  5. Sheng GD, Hu J, Wang XK (2008) Appl Radiat Isot 66:1313–1320

    Article  CAS  Google Scholar 

  6. Kuhu AT (1972) Electrochemistry of cleaner environments. Plenum Press, New York

    Google Scholar 

  7. Mellah A, Chegrouche S, Barkat M (2007) Hydrometallurgy 85:163–171

    Article  CAS  Google Scholar 

  8. Singh H, Mishra SL, Vijayalakshmi R (2004) Hydrometallurgy 73:63–70

    Article  CAS  Google Scholar 

  9. Prasadaao TR, Metilda P, Gladis JM (2006) Talanta 68:1047–1064

    Article  Google Scholar 

  10. Koji O, Akhmad S, Toshio T, Mitsuko O, Shoji M (2009) Talanta 79:1031–1035

    Article  Google Scholar 

  11. Baik MH, Cho WJ, Hahn PS (2004) J Radioanal Nucl Chem 260:495–502

    Article  CAS  Google Scholar 

  12. Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK (2012) Sci China Chem 55:632–642

    Article  CAS  Google Scholar 

  13. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:362–2367

    Article  Google Scholar 

  14. Chen CL, Xu D, Tan XL, Wang XK (2007) J Radioanal Nucl Chem 273:227–233

    Article  CAS  Google Scholar 

  15. Yu S, Ren A, Cheng J, Song X, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129–133

    Article  CAS  Google Scholar 

  16. Guo ZQ, Xu DP, Zhao DL, Zhang SW, Xu JZ (2011) J Radioanal Nucl Chem 287:505–512

    Article  CAS  Google Scholar 

  17. Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  18. James D, Venkateswaran G, Rao TP (2009) Microporous Mesoporous Mater 119:165–170

    Article  CAS  Google Scholar 

  19. Sherm DM, Peacock CL, Hubbar CG (2008) Geochim Cosmochim Acta 72:298–310

    Article  Google Scholar 

  20. Zhang XF, Ji LY, Wang J, Li RM, Liu Q, Zhang ML, Liu LH (2012) Colloids Surf A 414:220–227

    Article  CAS  Google Scholar 

  21. Gaini LE, Lakraimi M, Sebbar E, Meghea A, Bakasse M (2009) J Hazard Mater 161:627–632

    Article  Google Scholar 

  22. Pavlovic I, Pérez MR, Barriga C, Ulibarri MA (2009) Appl Clay Sci 43:125–129

    Article  CAS  Google Scholar 

  23. Rives V, Ulibarri MA (1999) Coord Chem Rev 181:6–120

    Article  Google Scholar 

  24. Pérez MR, Pavlovic I, Barriga C, Cornejo J, Hermosín MC, Ulibarri MA (2006) Appl Clay Sci 32:245–251

    Article  Google Scholar 

  25. Rojas R, Perez MR, Erro EM, Ortiz PI, Ulibarri MA, Giacomelli CE (2009) J Colloid Interface Sci 33:425–431

    Article  Google Scholar 

  26. Gutmann NH, Spiccia L, Turney TW (2000) J Mater Chem 10:1219–1224

    Article  CAS  Google Scholar 

  27. Zhao DL, Wang XB, Yang ST, Guo ZQ, Sheng GD (2012) J Environ Radioact 103:20–29

    Article  CAS  Google Scholar 

  28. Sheng GD, Hu J, Jin H, Yang ST, Ren XM, Li Y, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98:291–299

    Article  CAS  Google Scholar 

  29. Tan XL, Wang XK, Chen CL, Sun AH (2007) Appl Radiat Isot 65:375–383

    Article  CAS  Google Scholar 

  30. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK (2009) Chem Eng J 150:188–196

    Article  CAS  Google Scholar 

  31. Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) J Radioanal Nucl Chem 285:447–454

    Article  CAS  Google Scholar 

  32. Guo ZJ, Li Y, Wu WS (2009) Appl Radiat Isot 67:996–1000

    Article  CAS  Google Scholar 

  33. Miyata S, Okada A (1977) Clays Clay Miner 25:14–18

    Article  Google Scholar 

  34. Zhao DL, Sheng GD, Hu J, Chen CL, Wang XK (2011) Chem Eng J 171:167–174

    Article  CAS  Google Scholar 

  35. Zhao DL, Wang Y, Xuan H, Chen Y, Cao T (2013) J Radioanal Nucl Chem 295:1251–1259

    Article  CAS  Google Scholar 

  36. Tan XL, Wang XK, Chen CL, Sun AH (2007) Appl Radiat Isot 65:375–383

    Article  CAS  Google Scholar 

  37. Guo ZQ, Xu D, Zhao DL, Zhang SW, Xu JZ (2011) J Radioanal Nucl Chem 287:505–512

    Article  CAS  Google Scholar 

  38. Tan XL, Wang XK, Geckeis H, Rabung TH (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  39. Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK (2011) Environ Sci Technol 45:7718–7726

    Article  CAS  Google Scholar 

  40. Chen CL, Wang XK (2006) Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  41. Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  42. Ho YS, McKay G (2000) Water Res 34:735–742

    Article  CAS  Google Scholar 

  43. Chen C, Wang JL (2008) J Hazard Mater 151:65–70

    Article  CAS  Google Scholar 

  44. Ho YS, McKay G (1998) Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  45. Bhattacharyal AK, Naiya TK, Mondal SN, Das SK (2008) Chem Eng J 137:529–541

    Google Scholar 

  46. Bhattacharyya KG, Gupta SS (2008) Colloids Surf A 317:71–79

    Article  CAS  Google Scholar 

  47. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  48. Hsyun SP, Cho YH, Hahn PS, Kim SJ (2001) J Radioanal Nucl Chem 250:55–62

    Article  Google Scholar 

  49. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Environ Sci Technol 38:1399–1407

    Article  CAS  Google Scholar 

  50. Wu CH, Lin CF, Horng PY (2004) J Environ Sci Health A 39:237–252

    Article  Google Scholar 

  51. Wu CH (2007) J Colloid Interface Sci 311:338–346

    Article  CAS  Google Scholar 

  52. Sheng GD, Yang ST, Sheng J, Zhao DL, Wang XK (2011) Chem Eng J 168:178–182

    Article  CAS  Google Scholar 

  53. Hayes KF, Leckie JO (1987) J Colloid Interf Sci 115:564–572

    Article  CAS  Google Scholar 

  54. Yan WL, Bai RB (2005) Water Res 39:688–698

    Article  CAS  Google Scholar 

  55. Yang K, Xing BS (2009) Environ Pollut 157:1095–1100

    Article  CAS  Google Scholar 

  56. Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  57. Sheng GD, Yang ST, Zhao DL, Sheng J, Wang XK (2012) Sci China Chem 55:182–194

    Article  CAS  Google Scholar 

  58. Sheng GD, Shen RP, Dong HP, Li YM (2013) Environ Sci Pollut Res 20:3708–3717

    Article  CAS  Google Scholar 

  59. Murphy RJ, Lenhart JJ, Honeyman BD (1999) Colloid Surf A 157:47–62

    Article  CAS  Google Scholar 

  60. Partey F, Norman D, Ndur S, Nartey R (2008) J. Colloid Interf Sci 321:493–500

    Article  CAS  Google Scholar 

  61. Genç-Fuhrman H, Tjell JC, McConchie D (2004) Environ Sci Technol 38:2428–2434

    Article  Google Scholar 

  62. Sheng GD, Hu BW (2013) J Radioanal Nucl Chem 298:455–464

    Article  CAS  Google Scholar 

  63. Sheng GD, Dong HP, Shen RP, Li YM (2013) Chem Eng J 217:486–494

    Article  CAS  Google Scholar 

  64. Sharma N, Kaur K, Kaur S (2009) J Hazard Mater 163:1338–1344

    Article  CAS  Google Scholar 

  65. Sheng GD, Li YM, Yang X, Ren XM, Yang ST, Hu J, Wang XK (2012) RSC Advances 2:12400–12407

    Article  CAS  Google Scholar 

  66. Sheng GD, Li YM, Dong HP, Shao DD (2012) J Radioanal Nucl Chem 293:797–806

    Article  CAS  Google Scholar 

  67. Sheng GD, Dong HP, Li YM (2012) J Environ Radioactiv 113:108–115

    Article  CAS  Google Scholar 

  68. Tan XL, Chen CL, Yu SM, Wang XK (2008) Appl Geochem 23:2767–2777

    Article  CAS  Google Scholar 

  69. Zhou YT, Nie HL, Branford-White C, He ZY, Zhu LM (2009) J Colloid Interface Sci 330:29–37

    Article  CAS  Google Scholar 

  70. Sheng GD, Shao DD, Ren XM, Wang XQ, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 178:505–516

    Article  CAS  Google Scholar 

  71. Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333–340

    Article  CAS  Google Scholar 

  72. Zhao DL, Chen SH, Yang SB, Yang X, Yang ST (2011) Chem Eng J 166:1010–1016

    Article  CAS  Google Scholar 

  73. Xu D, Tan XL, Chen CL, Wang XK (2008) J Hazard Mater 154:407–416

    Article  CAS  Google Scholar 

  74. Tahir SS, Rauf N (2003) J Chem Thermodyn 35:2003–2009

    Article  CAS  Google Scholar 

  75. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (21377005), Financial Grant from the China Postdoctoral Science Foundation (No. 2013M530302) and the PhD Start-up Fund of Anhui Jianzhu University are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Feng, S., Xuan, H. et al. Immobilization of uranium(VI) onto Mg2Al layered double hydroxide: role of key geochemical parameters. J Radioanal Nucl Chem 300, 1027–1037 (2014). https://doi.org/10.1007/s10967-014-2998-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2998-0

Keywords

Navigation