Skip to main content
Log in

Adsorptive features of polyacrylic acid hydrogel for UO2 2+

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Polyacrylic acid hydrogel was synthesized by Free Radical polymerization and characterized by means of FTIR. The FTIR results show that the carboxylic groups in the complexes coordinated to the metal ions in the form of two dentate. The effects of contact time, solid/liquid ratio, pH value, and initial concentration on the adsorption of UO2 2+ ions onto polyacrylic acid were investigated. The adsorption of UO2 2+ ions was highly dependent on the initial pH of metal ions solution and initial metal ions concentration. The adsorption kinetic data indicated that the chemical adsorption was the swiftness processes, the adsorption equilibrium could be achieved within 15 min. And there are very good correlation coefficients of linearized equations for Freundlich model, which indicated that the sorption isotherm of the hydrogel for UO2 2+ can be fitted to the Freundlich model. It was found that the maximum adsorption quantity of UO2 2+ was 1,179 mg/g. After five times of repeated tests for the hydrogel it still remained its excellent adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prasada Rao T, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta 68:1047–1064

    Article  Google Scholar 

  2. Eisenbud M, Gesell T (1997) Environmental radioactivity from natural, industrial, and military sources. Academic Press, Boston

    Google Scholar 

  3. Choppin GR, Morgenstern A (2000) Radionuclide separations in radioactive wastes disposal. J Radioanal Nucl Chem 243:45–51

    Article  CAS  Google Scholar 

  4. Xie SB, Yang J, Chen C, Zhang XJ, Wang QL, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radiact 99:126–133

    Article  CAS  Google Scholar 

  5. Van Horn JD, Huang H (2006) Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coord Chem Rev 250:765–775

    Article  Google Scholar 

  6. Mellah AS, Chegrouche Barkat M (2007) The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations. Hydrometallurgy 85:163–171

    Article  CAS  Google Scholar 

  7. Gu B, Ku Y, Brown GM (2005) Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins. Environ Sci Technol 39(3):901–907

    Article  CAS  Google Scholar 

  8. Kanekar AS, Pathak PN, Mohapatra PK, Manchanda VK (2010) Comparative extraction efficiencies of tri-n-butyl phosphate and N,N-dihexyloctanamide for uranium recovery using supercritical CO2. J Radioanal Nucl Chem 283:789–796

    Article  CAS  Google Scholar 

  9. Kuhu AT (1972) Electrochemistry of cleaner environments. Plenum Press, New York

    Google Scholar 

  10. Dietz ML, Philip HE, Sajdak LR, Chiarizia R (2001) An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media. Talanta 54(6):1173–1184

    Article  CAS  Google Scholar 

  11. Jung Y, Kim S, Park S, Kim JM (2008) Application of polymer-modified nanoporous silica to adsorbents of uranyl ions. Colloids Surf A 313–314:162–166

    Article  Google Scholar 

  12. Tsuruta T (2011) Biosorption of uranium for environmental applications using bacteria isolated from the uranium deposits. In: Microbes and Microbial Technology, Chap 11, pp 267–281

  13. Unuabonah EI, Adebowal KO, Olu-owolabi BI, Yang LZ, Kong LX (2008) Adsorption of Pb (ll) and Cd (ll) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93:1–9

    Article  CAS  Google Scholar 

  14. Wang CC, Chang CY, Chen CY (2001) Study on metal ion adsorption of bifunctional chelating/ion-exchange resins. Macromol Chem Phys 202(6):882–890

    Article  CAS  Google Scholar 

  15. Biswas M, Mukterjee A (1994) Synthesis and evaluation of metal-containing polymers. Adv Polym Sci 115:89–123

    Article  CAS  Google Scholar 

  16. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High–water–content hydrogel by mixing clay and dendritic. Mol Glue 463:339–343

    CAS  Google Scholar 

  17. Özeroğlu C, Doğan E, Keçeli G (2011) Investigation of Cs(I) adsorption on densely crosslinked poly(sodium methacrylate) from aqueous solutions. J Radioanal Nucl Chem 289:577–586

    Article  Google Scholar 

  18. Wang Q, Xie X, Zhang X, Zhang J, Wang A (2010) Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol 46:356–362

    Article  CAS  Google Scholar 

  19. Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J (2006) Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J Colloid Interface Sci 301:55–62

    Article  CAS  Google Scholar 

  20. Yetimoğlu EK, Kahraman MV, Bayramoğlu G, Ercan O, Apohan NK (2009) Sulfathiazole-based novel UV-cured hydrogel sorbents for mercury removal from aqueous solutions. Radiat Phys Chem 78:1800–1806

    Google Scholar 

  21. Zheng Y, Zhang J, Wang A (2009) Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly(acrylic acid)/attapulgite composite. Chem Eng J 155:215–222

    Article  CAS  Google Scholar 

  22. Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22:486–493

    Article  CAS  Google Scholar 

  23. O’Connor SM, Gehrke SH (1997) Synthesis and characterization of thermally-responsive hydroxypropyl methylcellulose gel spheres. J Appl Polym Sci 66:1279–1290

    Article  Google Scholar 

  24. Li N, Bai RB (2005) A novel amine-shielded surface cross-linking of chitosan hydrogel beads for enhanced metal adsorption performance. Ind Eng Chem Res 44:6692–6700

    Article  CAS  Google Scholar 

  25. Yan WL, Bai RB (2005) Adsorption of lead and humic acid on chitosan hydrogel beads. Water Res 39:688–698

    Article  CAS  Google Scholar 

  26. Wei M, Liao JL, Liu N, Zhang D, Kang HJ, Yang YY, Yong Y, Jin JN (2007) Interaction between uranium and humic acid (I): adsorption behaviors of U(VI) in soil humic acids. Nucl Sci Tech 18:287–293

    Article  CAS  Google Scholar 

  27. Wang GH, Liu JS, Wang XG, Xie ZY, Deng NS (2009) Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  Google Scholar 

  28. Liu TH, Fang J, Zhang Y, Zeng ZZ (2008) The effect of salt and pH on the phase transition behaviors of pH and temperature-responsive poly(N,N-dimethylacrylamide-co-methylacrylic acid). Macromol Res 16(8):670–675

    Article  CAS  Google Scholar 

  29. Kakihana M, Nagumo T (1987) Coordination structures for uranyl carboxylate complexes in aqueous solution studied by IR and carbon-13 NMR spectra. J Phys Chem 91:6128–6136

    Article  CAS  Google Scholar 

  30. Liu TH, Duan GH, Zeng ZZ (2009) Synthesis and characterization of cerium, thorium, and uranyl complexes with (E)-4-(4-methoxyphenoxy)-4-oxobut-2-enoic acid. J Coord Chem 62(13):2203–2211

    Article  CAS  Google Scholar 

  31. Nakamoto K (1986) Infrared spectra and raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  32. Kuppusamy K, Sivasankar BN, Govindarajan S (1996) Preparation and thermal reactivity of hydrazinium uranyl carboxylates. Thermochim Acta 274:139–148

    Article  CAS  Google Scholar 

  33. Rivas BL, Maturana HA, Ocampa X, Peric IM (1995) Adsorption behavior of Cu2+ and UO2 2+ ions on crosslinked poly[2,2-bis(acrylamido)acetic acid]. J Appl Polym Sci 58:2201–2205

    Article  CAS  Google Scholar 

  34. Yang ZY, Yang RD, Li FS, Yu KB (2000) Crystal structure and antitumor activity of some rare earth metal complexes with Schiff base. Polyhedron 19:2599–2604

    Article  CAS  Google Scholar 

  35. Riaz Q (2012) A study of the factors affecting the adsorption of cobalt ions onto Pakistani coal powder from solutions. J Radioanal Nucl Chem. doi:10.1007/s10967-012-2189-9

    Google Scholar 

  36. Lu S, Guo Z, Zhang C, Zhang S (2011) Sorption of Th(IV) on MX-80 bentonite: effect of pH and modeling. J Radioanal Nucl Chem 287:621–628

    Article  CAS  Google Scholar 

  37. Ma JH, Xu YJ, Fan B, Liang BR (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43(6):2221–2228

    Article  CAS  Google Scholar 

  38. Zhao L, Mitomo H (2008) Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation. J Appl Polym Sci 110:1388–1395

    Article  CAS  Google Scholar 

  39. Duan GJ, Liu TH, Wu WS, Yang Y (2012) Adsorption of UO2 2+ from aqueous solution onto copolymers of styrene and maleic anhydride. J Radioanal Nucl Chem. doi:10.1007/s10967-012-2275-z

    Google Scholar 

  40. Zheng Y, Liu Y, Wang A (2011) Fast removal of ammonium ion using a hydrogel optimized with response surface methodology. Chem Eng J 171:1201–1208

    Article  CAS  Google Scholar 

  41. Ansari SA, Mohapatra PK, Manchanda VK (2007) Synthesis of N,N′-dimethyl-N,N′-dibutyl malonamide functionalized polymer and its sorption affinities towards U(VI) and Th(IV) ions. Talanta 73:878–885

    Article  CAS  Google Scholar 

  42. Pang C, Liu YH, Cao XH, Li M, Huang GL, Hua R, Wang CX, Liu YT, An XF (2011) Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chem Eng J 170:1–6

    Article  CAS  Google Scholar 

  43. Fytianos K, Voudrias E, Kokkalis E (2000) Sorption-desorption behavior of 2,4-dichlorophenol by marine sediments. Chemosphere 40:3–6

    Article  CAS  Google Scholar 

  44. Rauf MA, Bukallah SB, Hamour FA, Nasir AS (2008) Adsorption of dyes from aqueous solutions onto sand and their kinetics behavior. Chem Eng J 137:238–243

    Article  CAS  Google Scholar 

  45. Kay GM, Blair HS, Gardner JR (1982) Adsorption of dyes on chitin. I. Equilibrium studies. J Appl Polym Sci 27:3043–3057

    Article  Google Scholar 

  46. Mall ID, Srivastava VC, Kumar GVA, Mishra IM (2006) Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf A 278:175–187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. J1030932 and No. J51074083), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110211120038) and Fundamental Research Funds for the Central Universities (lzujbky-2012-64 and lzujbky-2012-63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Tonghuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonghuan, L., Guojian, D., Xiaojiang, D. et al. Adsorptive features of polyacrylic acid hydrogel for UO2 2+ . J Radioanal Nucl Chem 297, 119–125 (2013). https://doi.org/10.1007/s10967-012-2316-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2316-7

Keywords

Navigation