Skip to main content
Log in

Determination of uranium, thorium and plutonium isotopes by ICP-MS

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Quantitative and isotopic measurement of actinide elements is required in many circumstances in the nuclear industry. For example, determination of very low levels of these alpha emitters in human urine samples is used to assess the internal committed dose for nuclear workers. Quantifying actinide isotopes in radioactive waste from nuclear processing and nuclear facility decommissioning provides important information for waste management. Accurate determination of the uranium isotopic ratios in reactor fuels provides fuel burnup information. Inductively coupled plasma mass spectrometry (ICP-MS) has been used for the determination of Th, U, and Pu in various samples including urine, nuclear waste, and nuclear fuel in our laboratory. In order to maximize the capability of the technique and ensure quality analyses, ICP-MS was used to analyze samples directly, or after pre-treatment to separate complicated matrices or to concentrate the analyte(s). High-efficiency sample introduction techniques were investigated. Spectral interferences to minor isotopes caused by peak tails and hydride ions of major actinide isotopes were studied in detail using solutions prepared with light and heavy waters. The quality of the isotopic ratio measurement was monitored using standard reference materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Becker JS (2005) Trends Anal Chem 24:243–254

    Article  CAS  Google Scholar 

  2. Becker JS (2003) Spectrochim Acta B 58:1757–1784

    Article  Google Scholar 

  3. Shi Y, Dai X, Collins R, Kramer-Tremblay S (2011) Health Phys 101:148–153

    Article  CAS  Google Scholar 

  4. Shiraishi K, Ko S, Arae H, Ayama K (2007) J Radioanal Nucl Chem 273:307–310

    Article  CAS  Google Scholar 

  5. Bouvier-Capely C, Ritt J, Baglan N, Cossonnet C (2004) Appl Radiat Isot 60:629–633

    Article  CAS  Google Scholar 

  6. Al-Jundi J, Werner E, Roth P, Höllriegl V, Wendler I, Schramel P (2004) J Environ Radioact 71:61–70

    Article  CAS  Google Scholar 

  7. Dinse C, Baglan N, Cossonnet C, Bouvier C (2000) Appl Radiat Isot 53:381–386

    Article  CAS  Google Scholar 

  8. Tölgyesi S, Gresits I, Past T, Szabó L, Volent G, Pintér T (2002) J Radioanal Nucl Chem 254:357–361

    Article  Google Scholar 

  9. Sill CW, Sill DS (1989) Waste Manag 9(4):219–229

    Article  CAS  Google Scholar 

  10. Wolf SF, Bowers DL, Cunnane JC (2005) J Radioanal Nucl Chem 263:581–586

    Article  CAS  Google Scholar 

  11. Günther-Leopold I, Waldis JK, Wernli B, Kopajtic Z (2005) Int J Mass Spectrom 242:197–202

    Article  Google Scholar 

  12. Wacker J (2001) J Radioanal Nucl Chem 249:103–108

    Article  Google Scholar 

  13. Zoriy MV, Halicz L, Ketterer ME, Pickhardt C, Ostapczuk P, Becker JS (2004) J Anal At Spectrom 19:362–367

    Article  CAS  Google Scholar 

  14. Kim C-S, Kim C-K, Martin P, Sansone U (2007) J Anal At Spectrom 22:827–841

    Article  CAS  Google Scholar 

  15. Vais V, Li C, Cornett J (2004) J Anal At Spectrom 19:1281–1283

    Article  CAS  Google Scholar 

  16. Epov VN, Evans RD, Zheng J, Donard OFX, Yamada M (2007) J Anal At Spectrom 22:1131–1137

    Article  CAS  Google Scholar 

  17. Zheng J, Yamada M (2006) Talanta 69:1246–1253

    Article  CAS  Google Scholar 

  18. Liezer M, Lehn SA, Olsen KB, Farmer OT III, Duckworth DC (2009) J Radioanal Nucl Chem 282:299–304

    Article  Google Scholar 

  19. Vais V, Li C, Cornett J (2004) Anal Bioanal Chem 380:235–239

    Article  CAS  Google Scholar 

  20. Epov VN, Benkhedda K, Cornett RJ, Evans RD (2005) J Anal At Spectrom 20:424–430

    Article  CAS  Google Scholar 

  21. Pappas RS, Ting BG, Paschal DC (2004) J Anal At Spectrom 19:762–766

    Article  CAS  Google Scholar 

  22. Green LW, Elliot NL, Miller FC, Leppinen JJ (1989) J Radioanal Nucl Chem 131:299–309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank T. Shultz (Analytical Chemistry Branch, AECL) for providing the results of uranium isotopes analyzed by TIMS and the dissolved reactor fuel samples. We would like to thank X. Dai, S. Kramer-Tremblay and J. Moore (Dosimetry Services, AECL) for the urine sample preparation. We also would like to think R. Rao and L. Zhou (Analytical Chemistry Branch, AECL) for preparing nuclear waste samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Collins, R. & Broome, C. Determination of uranium, thorium and plutonium isotopes by ICP-MS. J Radioanal Nucl Chem 296, 509–515 (2013). https://doi.org/10.1007/s10967-012-2128-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2128-9

Keywords

Navigation