Skip to main content
Log in

Ground based radon (222Rn) observations in Bucharest, Romania and their application to geophysics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Atmospheric radon concentration was continuously monitored in Bucharest-Magurele area both near the ground at 1 m height as well as at 10 m height. This paper presents the results of radon in air near the ground concentrations obtained during the 1 July 2010 to 1 February 2012 period by use of solid state nuclear track detectors SSNTD CR-39. The mean atmospheric radon concentration near the ground at 1 m height was found to be 360.91 ± 66.49 Bq/m3, which was about more than an order of magnitude lower than average radon concentration in range of 44.92 ± 9.94 Bq/m3 recorded for period 1 August 2011 to 20 December 2011 at 10 m height by AlphaGUARD Radon monitor. The meteorological effects on the variation of atmospheric radon concentration were discussed. The analysis of spatio-temporal variations in time series radon concentration in air near the ground is a useful tool to study geo-dynamical processes associated with seismic activity in active Vrancea zone in Romania. Taking off the variations induced by external variables, such as temperature, barometric pressure, rainfall, and other meteorological parameters, can be assessed radon anomalies due to possible tectonic movements and also can be surveyed radioactivity background in relation with nuclear emergencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jacob DJ, Prather MJ, Rasch PJ, Shia R-L, Balkanski YJ et al (1997) Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short lived tracers. J Geophys Res 102(D5):5953–5970

    Article  CAS  Google Scholar 

  2. Dulaiova H, Peterson R, Burnett WC, Lane-Smith D (2005) A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. J Radioanal Nucl Chem 263:361–365

    CAS  Google Scholar 

  3. Kim G, Hwang D-W (2002) Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring. Geophys Res Lett 29(14):1678,23–1–4. doi:10.1029/2002GL015093

  4. Turekian KK, Nozaki Y, Benninger LK (1977) Geochemistry of atmospheric radon and radon products. Annu Rev Earth Planet Sci 5:227–255

    Article  CAS  Google Scholar 

  5. Zahorowski W, Chambers SD, Wang T, Kang C-H, Uno I et al (2005) Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites. Tellus 57B:124–140

    CAS  Google Scholar 

  6. Freund F (2011) Seeking out Earth’s warning signals. Nature 473:452

    Article  CAS  Google Scholar 

  7. Freund F (2003) Rocks that crackle and sparkle and glow: strange pre-earthquake phenomena. J Sci Explor 17(1):37–71

    Google Scholar 

  8. Yasuoka Y, Kawada Y, Nagahama H, Omori Y, Ishikawa T, Tokonami S, Shinogi M (2009) Preseismic changes in atmospheric radon concentration and crustal strain. Phys Chem Earth 34:431–434

    Article  Google Scholar 

  9. Omori Y, Nagahama H, Kawada Y, Yasuoka Y, Ishikawa T, Tokonami S, Shinogi M (2009) Preseismic alteration of atmospheric electrical conditions due to anomalous radon emanation. Phys Chem Earth 34:435–440

    Article  Google Scholar 

  10. Igarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S, Sasaki Y, Takahashi Y, Sano Y (1995) Ground water radon anomaly in Japan. Science 269:60–61

    Article  CAS  Google Scholar 

  11. Smetanova I, Holy K, Muellerova M, Polaskova A (2009) The effect of meteorological parameters on radon concentration in borehole air and water. J Radioanal Nucl Chem 283:101–109

    Article  Google Scholar 

  12. Vinson DS, Vengosh A, Hirschfeld D, Dwyer GS (2009) Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem Geol 260:159–171

    Article  CAS  Google Scholar 

  13. LaBrecque JJ, Cordoves PR, Rosales PA, Audemard F, Romero G (2001) Monitoring of radon anomalies in the Rio Casanay and a thermal spring near the El Pilar fault shortly after the July 9, 1997 earthquake (Mw = 6.9) in the state of Sucre (Venezuela). J Radioanal Nucl Chem 250:239–245

    Article  CAS  Google Scholar 

  14. Yasouka Y, Ishikawa T, Tokonami S, Takahashi H, Narazaki Y, Sinogi M (2008) A case study on the effect of water from groundwater sources on indoor radon levels. J Radioanal Nucl Chem 275:165–172

    Article  CAS  Google Scholar 

  15. Plastino W, Panza GF, Doglioni C, Frezzotti ML, Peccerillo A, De Felice P, Bella F, Povinec PP, Nisi S, Ioannucci L, Aprili P, Balata M, Cozzella ML, Laubenstein M (2011) Uranium groundwater anomalies and active normal faulting. J Radioanal Nucl Chem 288:101–107. doi:10.1007/s10967-010-0876-y

    Article  CAS  Google Scholar 

  16. Baykara O, İnceöz M, Doğru M, Aksoy E, Külahcı F (2009) Soil radon monitoring and anomalies in East Anatolian Fault System (Turkey). J Radioanal Nucl Chem 279(1):159–164. doi:10.1007/s10967-007-7211-2

    Article  CAS  Google Scholar 

  17. Freund FT et al (2009) Air ionization at rock surface and pre-earthquake signals. J Atmos Sol Terr Phys 71:1824–1834

    Article  CAS  Google Scholar 

  18. Bleier T et al (2009) Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake. Nat Hazards Earth Syst Sci 9:585–603

    Article  Google Scholar 

  19. Dunson JC, Bleier TE, Heraud SRJ, Alvarez CH, Lira A (2011) The Pulse Azimuth effect as seen in induction coil magnetometers located in California and Peru 2007–2010, and its possible association with earthquakes Nat. Hazards Earth Syst Sci 11:1–21. doi:10.5194/nhess-11-1-2011

    Article  Google Scholar 

  20. Eff-Darwich A, Martin-Luis C, Quesada M, delaNuez J, Coello J (2002) Variations on the concentration of 222Rn in the subsurface of the volcanic island of Tenerife, Canary Islands. Geophys Res Lett 29:26–29

    Article  Google Scholar 

  21. Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204

    Article  CAS  Google Scholar 

  22. Flerov GN, Chirkov AM, Tretyakova SP, Dzholos LV, Merkina KI (1986) The use of radon as an indicator of volcanic processes. Earth Phys 22:213–216

    Google Scholar 

  23. Zhuo W, Guo Q, Chen B, Cheng G (2008) Estimating the amount and distribution of radon flux density from the soil surface in China. J Environ Radioact 99:1143–1148

    Article  CAS  Google Scholar 

  24. Whittlestone S (1990) Radon daughter disequilibria in the lower marine boundary layer. J Atmos Chem 11:27–42

    Article  CAS  Google Scholar 

  25. Sakashita T, Doi M, Nakamura Y, Iida T (2004) A case study of radon-222 transport from continental North-East Asia to the Japanese islands in winter by numerical analysis. J Environ Radioact 72(3):245–257. doi:10.1016/S0265-931X(03)001.0265e931X

    Article  CAS  Google Scholar 

  26. Schery SD, Huang S (2004) An estimate of the global distribution of radon emissions from the ocean. Geophys Res Lett 31:L19104. doi:10.1029/2004GL021051

    Article  Google Scholar 

  27. Chambers S, Zahorowski W, Matsumoto K, Uematsu M (2009) Seasonal variability of radon-derived fetch regions for Sado Island, Japan, based on 3 years of observations: 2002–2004. Atmos Environ 43:271–279

    Article  CAS  Google Scholar 

  28. Ielsch G, Thieblemont D, Labed V, Richon P, Tymen G, Ferry C, Robe MC, Baubron JC, Bechennec F (2001) Radon (222Rn) level variations on a regional scale: Influence of the basement trace elements (U, Th) geochemistry on radon exhalation rates. J Environ Radioact 53(1):75–90

    Article  CAS  Google Scholar 

  29. IARC: International Agency for Research on Cancer (1988) Monographs on the evaluation of carcinogenic risks to humans. Man-made mineral fibres and radon. IARC Sci Publ 43:173–259

    Google Scholar 

  30. Ermilov A, Yaryna VP (1989) Radiometric alpha emitting nuclide fallout estimation. Meas Tech 32(11):1114–1125

    Article  Google Scholar 

  31. Garcia-Talavera M, Quintana B, Garcia-Diez E, Fernandez F (2001) Studies on radioactivity in aerosols as a function of meteorological variables in Salamanca (Spain). Atmos Environ 35:221–229

    Article  CAS  Google Scholar 

  32. Oth A, Wenzel F, Radulian M (2007) Source parameters of intermediate-depth Vrancea (Romania) earthquakes from empirical Green’s functions modeling. Tectonophysics 438:33–56

    Article  Google Scholar 

  33. Ardeleanu L, Leydecker G, Bonjer K-P, Busche H, Kaiser D, Schmitt T (2005) Probabilistic seismic hazard map for Romania as a basis for a new building code. Nat Hazards Earth Syst Sci 5:679–684

    Article  Google Scholar 

  34. Whittlestone S, Zahorowski W, Schery SD (1998) Radon flux variability with season and location in Tasmania, Australia. J Radioanal Nucl Chem 236:213–217

    Article  CAS  Google Scholar 

  35. King CY, Koizumi N, Kitagawa Y (1995) Hydrogeochemical anomalies and the 1995 Kobe earthquake. Science 269:38–39

    Article  CAS  Google Scholar 

  36. Monnin MM, Seidel JL (1992) Radon in soil-air and groundwater related to major geophysical events: a survey. Nucl Instrum Methods A 314:316–330

    Article  Google Scholar 

  37. Urbani F, LaBrecque JJ, Flores N, Cordoves PR (2006) Soil gases (222Rn, 220Rn and total radon) and 214Bi measurements across El Avila fault near Caracas, Venezuela. J Radioanal Nucl Chem 269(1):187–193

    Article  CAS  Google Scholar 

  38. Dobrovolsky IP, Gershenzon NI, Gokhberg MB (1989) Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake. Phys Earth Planet Inter 57:144–156

    Article  Google Scholar 

  39. Dobrovolsky IP, Zubkov SI, Miachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117:1025–1029

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the PN Program, Project: No. 09 27 01 03/2011-INOE of Romanian Ministry of Education, Research, Youth and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zoran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoran, M., Savastru, R. & Savastru, D. Ground based radon (222Rn) observations in Bucharest, Romania and their application to geophysics. J Radioanal Nucl Chem 293, 877–888 (2012). https://doi.org/10.1007/s10967-012-1761-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1761-7

Keywords

Navigation