Skip to main content
Log in

Uranium groundwater anomalies and active normal faulting

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The ability to predict earthquakes is one of the greatest challenges for Earth Sciences. Radon has been suggested as one possible precursor, and its groundwater anomalies associated with earthquakes and water–rock interactions were proposed in several seismogenic areas worldwide as due to possible transport of radon through microfractures, or due to crustal gas fluxes along active faults. However, the use of radon as a possible earthquake’s precursor is not clearly linked to crustal deformation. It is shown in this paper that uranium groundwater anomalies, which were observed in cataclastic rocks crossing the underground Gran Sasso National Laboratory, can be used as a possible strain meter in domains where continental lithosphere is subducted. Measurements evidence clear, sharp anomalies from July, 2008 to the end of March, 2009, related to a preparation phase of the seismic swarm, which occurred near L’Aquila, Italy, from October, 2008 to April, 2009. On April 6th, 2009 an earthquake (Mw = 6.3) occurred at 01:33 UT in the same area, with normal faulting on a NW–SE oriented structure about 15 km long, dipping toward SW. In the framework of the geophysical and geochemical models of the area, these measurements indicate that uranium may be used as a possible strain meter in extensional tectonic settings similar to those where the L’Aquila earthquake occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Geller RJ et al (1997) Earthquakes cannot be predicted. Science 275:1616–1617

    Article  CAS  Google Scholar 

  2. Wyss M (1997) Cannot earthquakes be predicted? Science 278:487–488

    Article  CAS  Google Scholar 

  3. Nature debates (1999) http://www.nature.com/nature/debates/earthquake/equake_frameset.html

  4. Peresan A et al (2005) Intermediate-term middle-range earthquake predictions in Italy: a review. Earth Sci Rev 69:97–132

    Article  Google Scholar 

  5. Hauksson E (1981) Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. J Geophys Res 86:9397–9410

    Article  Google Scholar 

  6. Roeloffs E (1999) Radon and rock deformation. Nature 399:104–105

    Article  CAS  Google Scholar 

  7. Ulomov VI, Mavashev BZ (1968) On a precursor of a strong tectonic earthquake. Dokl Akad Sci USSR, Earth Sci Sec 174:9–11

    Google Scholar 

  8. Wakita H, Nakamura Y, Notsu K, Noguchi M, Asada T (1980) Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 207:882–883

    Article  CAS  Google Scholar 

  9. King CY (1981) Do radon anomalies predict earthquakes? Nature 293:262

    Article  Google Scholar 

  10. Wakita H, Igarashi G, Nakamura Y, Sano Y, Notsu K (1989) Coseismic radon changes in groundwater. Geophys Res Lett 16:417–420

    Article  CAS  Google Scholar 

  11. Torgersen T, Beniot J, Mackie D (1990) Controls on groundwater Rn-222 concentrations in fractured rock. Geophys Res Lett 17:845–848

    Article  Google Scholar 

  12. Monnin MM, Seidel JL (1992) Radon in soil-air and groundwater related to major geophysical events: a survey. Nucl Instrum Methods A 314:316–330

    Article  Google Scholar 

  13. Virk HS, Singh B (1994) Radon recording of Uttarkashi earthquake. Geophys Res Lett 21:737–740

    Article  CAS  Google Scholar 

  14. Igarashi G et al (1995) Groundwater radon anomaly before the Kobe earthquake in Japan. Science 269:60–61

    Article  CAS  Google Scholar 

  15. King CY, Koizumi N, Kitagawa Y (1995) Hydrogeochemical anomalies and the 1995 Kobe earthquake. Science 269:38–39

    Article  CAS  Google Scholar 

  16. Trique M, Richon P, Perrier F, Avouac JP, Sabroux JC (1999) Radon emanation and electric potential variations associated with transient deformation near reservoir lakes. Nature 399:137–141

    Article  CAS  Google Scholar 

  17. Plastino W, Bella F (2001) Radon groundwater monitoring at underground laboratories of Gran Sasso (Italy). Geophys Res Lett 28:2675–2678

    Article  CAS  Google Scholar 

  18. Richon P et al (2003) Radon anomaly in the soil of Taal volcano, the Philippines: a likely precursor of the M 7.1 Mindoro earthquake (1994). Geophys Res Lett 30:1481–1484

    Article  Google Scholar 

  19. Plastino W, Kaihola L, Bartolomei P, Bella F (2001) Cosmic background reduction in the radiocarbon measurements by liquid scintillation spectrometry at the underground laboratory of Gran Sasso. Radiocarbon 43:157–161

    Google Scholar 

  20. Plastino W et al (2007) Tritium in water electrolytic enrichment and liquid scintillation counting. Radiat Meas 42:68–73

    Article  CAS  Google Scholar 

  21. Plastino W et al (2009) Environmental radioactivity in the ground water at the Gran Sasso National Laboratory (Italy): a possible contribution to the variation of the neutron flux background. J Radioanal Nucl Chem 282:809–813

    Article  CAS  Google Scholar 

  22. Plastino W et al (2010) Uranium groundwater anomalies and L’Aquila earthquake, 6th April 2009 (Italy). J Environ Radioact 101:45–50

    Article  CAS  Google Scholar 

  23. Peccerillo A (2005) Plio-Quaternary volcanism in Italy. Petrology, geochemistry, geodynamics. Springer, Heidelberg, pp 1–365

    Google Scholar 

  24. Panza GF, Raykova RB, Carminati E, Doglioni C (2007) Upper mantle flow in the Western Mediterranean. Earth Planet Sci Lett 257:200–214

    Article  CAS  Google Scholar 

  25. Faccenna C, Jolivet L, Piromallo C, Morelli A (2003) Subduction and the depth of convection in the Mediterranean mantle. J Geophys Res 108:2099–2111

    Article  Google Scholar 

  26. Gueguen E, Doglioni C, Fernandez M (1998) On the post-25 Ma geodynamic evolution of the Western Mediterranean. Tectonophysics 298:259–269

    Article  Google Scholar 

  27. Margheriti L, Lucente FP, Pondrelli S (2003) SKS splitting measurements in the Apenninic–Tyrrhenian domain (Italy) and their relation with lithospheric subduction and mantle convection. J Geophys Res 108:2218–2237

    Article  Google Scholar 

  28. Barruol G, Deschamp A, Coutant O (2004) Mapping upper mantle anisotropy beneath SE France by SKS splitting indicates Neogene asthenospheric flow induced by Apenninic slab rollback and deflected by the deep Alpine roots. Tectonophysics 394:125–138

    Article  Google Scholar 

  29. Ismail-Zadeh A, Aoudia A, Panza GF (2010) Three-dimensional numerical modeling of contemporary mantle flow and tectonic stress beneath the Central Mediterranean. Tectonophysics 482:226–236

    Article  Google Scholar 

  30. Panza GF, Peccerillo A, Aoudia A, Farina B (2007) Geophysical and petrological modeling of the structure and composition of the crust and upper mantle in complex geodynamic settings: the Tyrrhenian Sea and surroundings. Earth Sci Rev 80:1–46

    Article  Google Scholar 

  31. Frezzotti ML, Peccerillo A, Panza GF (2009) Carbonate metasomatism and CO2 litosphere-astenosphere degassing beneath the Western Mediterranean: an integrated model arising from petrological and geophysical data. Chem Geol 262:108–120

    Article  CAS  Google Scholar 

  32. Thomsen TB, Schimdt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet Sci Lett 267:17–31

    Article  CAS  Google Scholar 

  33. Chimera G, Aoudia A, Saraò A, Panza GF (2003) Active tectonics in Central Italy: constraints from surface wave tomography and source moment tensor inversion. Phys Earth Planet Int 138:241–262

    Article  Google Scholar 

  34. Miller S et al (2004) Aftershock driven by a high pressure CO2 source at depth. Nature 427:724–727

    Article  CAS  Google Scholar 

  35. Sibson RH (1992) Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 211:283–293

    Article  Google Scholar 

  36. Kreemer C, Holt WE, Haines AJ (2002) The global moment rate distribution within plate boundary zones. Geodyn Ser 30:173–189

    Google Scholar 

  37. Vezzani L, Ghisetti F (1998) Carta Geologica dell’Abruzzo - scala 1/100.000. Regione Abruzzo, Selca

    Google Scholar 

  38. Kuleff I, Petrov P, Kostadinov K (1980) Uranium content variations in thermal waters from the west Rhodope crystalline massif during earthquakes in the Chepino valley (south Bulgaria). J Radioanal Nucl Chem. 58:267–274

    Article  Google Scholar 

  39. Finkel RC (1981) Uranium concentrations and 234U/238U activity ratios in fault associated groundwater as possible earthquake precursors. Geophys Res Lett 8:453–456

    Article  CAS  Google Scholar 

  40. McCaig A (1989) Fluid flow through fault zones. Nature 340:600

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the support by National Scientific Committee Technology of the National Institute of Nuclear Physics, the Chemistry and Chemical Plants Service of the Gran Sasso National Laboratory, and the Istituto Nazionale di Geofisica e Vulcanologia–Italian Seismic Bulletin for the seismic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Plastino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plastino, W., Panza, G.F., Doglioni, C. et al. Uranium groundwater anomalies and active normal faulting. J Radioanal Nucl Chem 288, 101–107 (2011). https://doi.org/10.1007/s10967-010-0876-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0876-y

Keywords

Navigation