Skip to main content
Log in

Rapid determination of 89,90Sr in wide range of activity concentration by combination of yttrium, strontium separation and Cherenkov counting

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The methodology for the rapid determination of 89,90Sr in wide range of activity concentration is given. Methodology is based on simultaneous separation of strontium and yttrium from samples by mixed solvent anion exchange chromatography, mutual separation of 89,90Sr from 90Y by hydroxide precipitation and quantitative 89,90Sr determination by Cherenkov counting within 3 days. It is shown that Y and Sr can be efficiently separated from alkaline, alkaline earth and transition elements as well as from lanthanides and actinides on the column filed by strong base anion exchanger in nitrate form and 0.25 M HNO3 in mixture of ethanol and methanol as eluent. Decontamination factor for Ba, La and other examined elements except calcium is low and can not affect quantitative determination in predictable circumstances. Methodology for quantitative determination by Cherenkov counting based on following the changes of sample activity over time is described and discussed. It has been shown that 89,90Sr can be determined with acceptable accuracy when 89Sr/90Sr ratio is over 10:1 and that separation of Y enables reliable determination of 89Sr and 90Sr in wide range of 89Sr/90Sr ratios (60:1) and in some cases in presence of other yttrium and strontium isotopes. The methodology was tested by determination of 89,90Sr in Analytics crosscheck samples (nuclear waste sample) and ERA proficiency testing samples (low level activity samples). Obtained results shows that by using of low level liquid scintillation counter it can be possible to determine 89Sr and 90Sr in wide range of concentration activity (1–1,000 Bq/L/kg) with uncertainty below 10% within 2–3 days. Results also show that accuracy of determination of 89Sr (and 90Sr) strongly depends on the determination of difference between separation and counting time when activity ratio of 89Sr/90Sr is high. Examination the influence of media and vial type on background radiation and counting efficiency has shown that lowest limit of determination can be obtained by using of HNO3 in plastic vials as counting media, because in this combination figure of merit is maximized. For the recovery of 50% and 100 min of counting time estimated MDA is 55 Bq and 90 Bq for 90Sr and 89Sr, respectively. Analysis of combined uncertainty shows that it mainly depends on uncertainty of efficiency and recovery determination, uncertainty of activities determination for both isotopes and level of background radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu S, Ghods A, Veselsky JC, Mirna A, Schelenz R (1990) Radiochim Acta 51:195

    CAS  Google Scholar 

  2. Horwitz EP, Dietz ML, Fisher D (1991) Anal Chem 63:522

    Article  CAS  Google Scholar 

  3. Horwitz EP, Chiarzia R, Dietz ML (1992) Solvent Ext Ion Exch 10:313

    Article  CAS  Google Scholar 

  4. Horwitz EP, Chiarzia R, Dietz ML (1992) J Radioanal Nucl Chem 161:575

    Article  CAS  Google Scholar 

  5. Vajda N, Ghods-Esphahani A, Cooper E, Danesi PR (1992) J Radioanal Nucl Chem 162:307

    Article  CAS  Google Scholar 

  6. Grate JW, Streblin R, Janata J, Egorov O, Ruzička J (1996) Anal Chem 68:333

    Article  CAS  Google Scholar 

  7. Fliss M, Botsch W, Handl J, Michel R, Slavov VP, Borschtschenko VV (1998) Radiochim Acta 83:81

    Google Scholar 

  8. Grahek Ž, Eškinja I, Košutić K, Lulić S, Kvastek K (1999) Anal Chim Acta 379:107

    Article  CAS  Google Scholar 

  9. Grahek Ž, Košutić K, Lulić S (1999) J Radioanal Nucl Chem 242:33

    Article  CAS  Google Scholar 

  10. Torres JM, Tent J, Llaurado M, Rauret G (2002) J Environ Radioact 59:113

    Article  CAS  Google Scholar 

  11. Chen QJ, Hou XL, Yu YX, Dahlgaard H, Nielsen SP (2002) Anal Chim Acta 466:109

    Article  CAS  Google Scholar 

  12. Ageyev VA, Odintsov OO, Sajeniouk AD (2005) J Radioanal Nucl Chem 264:337

    Article  Google Scholar 

  13. Grahek Ž, Rožmarić Mačefat M (2005) Anal Chim Acta 534:271

    Article  CAS  Google Scholar 

  14. Grahek Ž, Košutić K, Rozmarić-Mačefat M (2006) J Radioanal Nucl Chem 268(2):179

    Article  CAS  Google Scholar 

  15. Tovedal A, Nygren U, Ramebäck H (2008) J Radioanal Nucl Chem 276:357

    Article  CAS  Google Scholar 

  16. Tovedal A, Nygren U, Ramebäck H (2009) J Radioanal Nucl Chem 282:455

    Article  CAS  Google Scholar 

  17. Tovedal A, Nygren U, Lagerkvist P, Vesterlund A, Ramebäck H (2009) J Radioanal Nucl Chem 282:461

    Article  CAS  Google Scholar 

  18. Vesterlund A, Tovedal A, Nygren U, Ramebäck H (2009) J Radioanal Nucl Chem 282:951

    Article  CAS  Google Scholar 

  19. Jaggi M, Eikenberg J (2009) Appl Radiat Isot 67:765

    Article  CAS  Google Scholar 

  20. Günther K, Lange S, Veit M (2009) Appl Radiat Isot 67:781

    Article  Google Scholar 

  21. Heckel A, Vogl K (2009) Appl Radiat Isot 67:794

    Article  CAS  Google Scholar 

  22. DeVol T, Clements JP, Farawila A, O′Hara HJ, Egorov OB (2009) J Radioanal Nucl Chem 282:623

    Article  CAS  Google Scholar 

  23. Maxwell SL, Cullioan BK (2009) J Radioanal Nucl Chem 279:105

    Article  CAS  Google Scholar 

  24. Maxwell SL, Cullioan BK (2009) J Radioanal Nucl Chem 279:901

    Article  CAS  Google Scholar 

  25. Wallova G, Kandler N, Wallner G (2010) J Radioanal Nucl Chem 286:429

    Article  CAS  Google Scholar 

  26. Landstetter C, Ringer W, Achtaz A, Katzzbererger E (2010) J Radioanal Nucl Chem 286:435

    Article  CAS  Google Scholar 

  27. Kužel F, Staffova P, Špenditkova I, John J, Šebesta F (2010) J Radioanal Nucl Chem 286:729

    Article  Google Scholar 

  28. Karacan F (2011) J Radioanal Nucl Chem 288:685

    Article  CAS  Google Scholar 

  29. Dulanska S, Remenec B, Matel L, Galanda D, Molnar A (2011) J Radioanal Nucl Chem 288:705

    Article  CAS  Google Scholar 

  30. Ometakova J, Dulanska S, Remenec B, Matel L (in press) J Radioanal Nucl Chem. doi:10.1007/s10967-011-1338-x

  31. Temba ESC, Junior ASR, Amaral AM, Monteiro RPG (in press) J Radioanal Nucl Chem. doi: 10.1007/s10967-011-1327-0

  32. Currie LA (1968) Anal Chem 40:586

    Article  CAS  Google Scholar 

  33. Guide to the Expression of Uncertainty in Measurement, ISO/IEC Geneve, Switzerland 2008

  34. Passo CJ Jr, Cook GT (1994) Handbook of environmental liquid scintilation spectrometry, Publ. PMC0387 12/94. Packard BioScience, Meriden

    Google Scholar 

  35. Jelly JV (1958) Čerenkov radiation and its application. Pergamon Press, Oxford

    Google Scholar 

  36. Mosqueda F, Villa M, Vaca F, Bolivar JP (2007) Anal Chim Acta 604:184

    Article  CAS  Google Scholar 

  37. Herranz M, Idoeta R, Legrada F (2011) Radiat Meas 46:680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Grahek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grahek, Ž., Karanović, G. & Nodilo, M. Rapid determination of 89,90Sr in wide range of activity concentration by combination of yttrium, strontium separation and Cherenkov counting. J Radioanal Nucl Chem 292, 555–569 (2012). https://doi.org/10.1007/s10967-011-1441-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1441-z

Keywords

Navigation