Skip to main content
Log in

Removal of Co(II) from aqueous solution by using hydroxyapatite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tan XL, Fang M, Wang XK (2010) Molecules 15:8431–8468

    Article  CAS  Google Scholar 

  2. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Microporous Mesoporous Mater 123:1–9

    Article  CAS  Google Scholar 

  3. Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  4. Hu J, Xie Z, He B, Sheng GD, Chen CL, Li JX, Chen YX, Wang XK (2010) Sci China B Chem 53:1420–1428

    Article  CAS  Google Scholar 

  5. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK (2009) Chem Eng J 150:188–195

    Article  CAS  Google Scholar 

  6. Tan XL, Wang XK, Geckeis H, Rabung T (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  7. Lisona D, Boeckb MD, Verougstraete V, Kirsh-Voldersb M (2001) Occup Environ Med 58:619–625

    Article  Google Scholar 

  8. Zhang SW, Guo ZQ, Xu JZ, Niu HH, Chen ZS, Xu JZ (2011) J Radioanal Nucl Chem 288:121–130

    Article  CAS  Google Scholar 

  9. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  10. Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333–340

    Article  CAS  Google Scholar 

  11. Shao DD, Xu D, Wang SW, Fan QH, Wu WS, Dong YH, Wang XK (2009) Sci China B Chem 52:362–371

    Article  CAS  Google Scholar 

  12. Kokubo T, Kim HM, Kawashita M (2003) Biomaterials 24:2161–2175

    Article  CAS  Google Scholar 

  13. Matsumoto T, Tamine KI, Kagawa R, Hamada Y, Okazaki M, Takahashi J (2006) J Ceram Soc Jpn 114:760–762

    Article  CAS  Google Scholar 

  14. Wang CX, Wang M, Zhou X (2003) Biomaterials 24:3069

    Article  CAS  Google Scholar 

  15. Yang ZP, Si SH, Zeng XM, Zhang CJ, Dai HJ (2008) Acta Biomater 4:560

    Article  CAS  Google Scholar 

  16. Shen JW, Wu T, Wang Q, Pan HH (2008) Biomaterials 29:513

    Article  CAS  Google Scholar 

  17. Kandori K, Tsuyama S, Tanaka H, Ishikawa T (2007) Colloid Surf B 58:98

    Article  CAS  Google Scholar 

  18. Reddy MP, Venugopal A, Subrahmanyam M (2007) Appl Catal B 69:164

    Article  CAS  Google Scholar 

  19. Zhang LP, Zhang H, Ge ZW, Yu XJ (2011) J Radioanal Nucl Chem 288:537–546

    Article  CAS  Google Scholar 

  20. Chen L, Yu XJ, Zhao ZD, Pan JS (2008) J Radioanal Nucl Chem 275:209–216

    Article  CAS  Google Scholar 

  21. Yu S, Ren A, Cheng J, Song XP, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129–133

    Article  CAS  Google Scholar 

  22. EI-Khouly SH (2006) J Radioanal Nucl Chem 270:391–398

    Article  Google Scholar 

  23. Davila-Rangel JI, Solache-Rios M (2006) J Radioanal Nucl Chem 270:465–471

    Article  CAS  Google Scholar 

  24. Koudsi UY, Dyer A (2001) J Radioanal Nucl Chem 247:209–219

    Article  CAS  Google Scholar 

  25. Hanzel R, Rajec P (2000) J Radioanal Nucl Chem 246:607–615

    Article  CAS  Google Scholar 

  26. Sheng GD, Shao DD, Fan QH, Xu D, Chen YX, Wang XK (2009) Radiochim Acta 97:621–630

    Article  CAS  Google Scholar 

  27. Xu D, Tan XL, Chen CL, Wang XK (2008) J Hazard Mater 154:407–416

    Article  CAS  Google Scholar 

  28. Fan QH, Shao DD, Hu J, Wu WS, Wang XK (2008) Surf Sci 602:778–785

    Article  CAS  Google Scholar 

  29. Yu SM, Li XG, Ren AP, Shao DD, Chen CL, Wang XK (2006) J Radioanal Nucl Chem 268:387–392

    Article  CAS  Google Scholar 

  30. Kara M, Yuzer H, Sabah E, Celik MS (2003) Water Res 37:224–232

    Article  CAS  Google Scholar 

  31. Shao DD, Wang XK, Fan QH (2009) Microporous Mesoporous Mater 117:243–248

    Article  CAS  Google Scholar 

  32. Hu J, Chen CL, Sheng GD, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98:421–429

    Article  CAS  Google Scholar 

  33. Shen WZ, Guo QJ, Zhang YS, Liu Y, Zheng JT, Cheng J, Fan J (2006) Colloid Surf A 273:147–153

    Article  CAS  Google Scholar 

  34. Li AM, Dai JY (2006) Water Res 40:1951–1956

    Article  CAS  Google Scholar 

  35. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  36. Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Appl Radiat Isot 671:1600–1608

    Article  Google Scholar 

  37. Sheng GD, Sheng J, Yang ST, Hu J, Wang XK (2011) J Radioanal Nucl Chem 289(1):129–135

    Article  CAS  Google Scholar 

  38. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Environ Sci Technol 38:1399–1407

    Article  CAS  Google Scholar 

  39. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  40. Hu J, Shao DD, Chen CL, Sheng GD, Li JX, Wang XK, Nagatsu M (2010) J Phys Chem B 114:6779–6785

    Article  CAS  Google Scholar 

  41. Yüzer H, Kara M, Sabah E, Celik MS (2008) J Hazard Mater 151:33–37

    Article  Google Scholar 

  42. Zhao GX, Zhang HX, Fan QH, Ren XM, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 173:661–668

    Article  CAS  Google Scholar 

  43. Hu J, Chen CL, Zhu XX, Wang XK (2009) J Hazard Mater 162:1542–1550

    Article  CAS  Google Scholar 

  44. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  45. Yang SB, Hu J, Chen CL, Shao DD, Wang XK (2011) Environ Sci Technol 45:3621–3627

    Article  CAS  Google Scholar 

  46. Chen CL, Wang XK (2007) Appl Radiat Isot 65:155–163

    Article  CAS  Google Scholar 

  47. Tan XL, Wang XK, Chen CL, Sun AH (2007) Appl Radiat Isot 65:375–381

    Article  CAS  Google Scholar 

  48. Esmadi F, Simm J (1995) Colloid Surf A 104:265–270

    Article  CAS  Google Scholar 

  49. Li JX, Hu J, Sheng GD, Zhao GX, Huang Q (2009) Colloid Surf A 349:195–201

    Article  CAS  Google Scholar 

  50. Shao DD, Hu J, Sheng GD, Ren XM, Chen CL, Wang XK (2010) J Phys Chem C 114:21524–21530

    Article  CAS  Google Scholar 

  51. Das DK, Pathak PN, Kumar S, Manchanda VK (2009) J Radioanal Nucl Chem 281:449–455

    Article  CAS  Google Scholar 

  52. Hurel C, Marmier N (2010) J Radioanal Nucl Chem 284:225–230

    Article  CAS  Google Scholar 

  53. Strathmann TJ, Myneni SCB (2005) Environ Sci Technol 39:4027–4034

    Article  CAS  Google Scholar 

  54. Sheng GD, Wang SW, Hu J, Lu Y, Li JX, Dong YH, Wang XK (2009) Colloid Surf A 339:159–166

    Article  CAS  Google Scholar 

  55. Shao DD, Hu J, Wang XK (2010) Plasma Process Polym 12:977–985

    Article  Google Scholar 

  56. Tahir SS, Rauf N (2003) J Chem Thermodyn 35:2003–2009

    Article  CAS  Google Scholar 

  57. Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009) J Hazard Mater 168:458–465

    Article  CAS  Google Scholar 

  58. Tan XL, Wang XK, Fang M, Chen CL (2007) Colloid Surf A 296:109–116

    Article  CAS  Google Scholar 

  59. Chen CL, Hu J, Shao DD, Li JX, Wang XK (2009) J Hazard Mater 164:923–928

    Article  CAS  Google Scholar 

  60. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  61. Tan XL, Chen CL, Yu SM, Wang XK (2008) Appl Geochem 23:2767–2777

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Chen, L. & Wang, H. Removal of Co(II) from aqueous solution by using hydroxyapatite. J Radioanal Nucl Chem 291, 777–785 (2012). https://doi.org/10.1007/s10967-011-1351-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1351-0

Keywords

Navigation