Skip to main content
Log in

High Sorption Capacity of U(VI) by COF-Based Material Doping Hydroxyapatite Microspheres: Kinetic, Equilibrium and Mechanism Investigation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Most of heavy metal ions have toxicity, and some of them are radioactive, for example, the uranyl ion is one of the radioactive pollutants. Herein, the COF-based material doping hydroxyapatite microspheres (COF-HAP) has been synthesized and used for adsorbing the uranyl ions from aqueous solutions. We study and analyze the adsorption behavior by the sorption kinetic study, the sorption isotherms study, and the thermodynamics study. The adsorption can be made clear via three adsorption mechanisms, which cover the surface precipitate, surface complexation, and ion exchange. A series of characterizations about the COF-HAP make the structure of the adsorbent clearly, which include AFM, FTIR, XRD, SEM, and BET analysis techniques. The COF-HAP material enhances the adsorption capacity for U(VI) via doping the hydroxyapatite microspheres (HAP) into the COF-based material (COF-COOH). The maximum adsorption capacity of U(VI) on the COF-HAP is 510 mg g−1. The result provides an effective method about the removal of U(VI), so that it is possible that the inorganic–organic porous framework composite material will act as a candidate for the adsorption of heavy metal ions in future.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Ai, Y. Liu, W. Lan, J. Jin, J. Xing, Y. Zou, C. Zhao, X. Wang, Chem. Eng. J. 343, 460–466 (2018)

    CAS  Google Scholar 

  2. M. Xu, T. Wang, P. Gao, L. Zhao, L. Zhou, D. Hua, J. Mater. Chem. A 7, 11214–11222 (2019)

    CAS  Google Scholar 

  3. Y. Wang, Y. Chen, L. Chen, Y. Fang, Y. Chi, C. Hu, Chem. Eng. J. 316, 936–950 (2017)

    CAS  Google Scholar 

  4. Y. Jie, X. Luo, L. Bo, Z. Jian, F. Jian, W. Zhu, S. Wang, Y. Zhang, X. Lin, C. Ping, J. Mater. Chem. A 6, 15359–15370 (2018)

    Google Scholar 

  5. Z. Li, Z. Huang, W. Guo, W. Lin, L. Zheng, Z. Chai, W. Shi, Environ. Sci. Technol. 51, 5666–5674 (2017)

    CAS  PubMed  Google Scholar 

  6. J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Chem. Soc. Rev. 47, 2322–2356 (2018)

    CAS  PubMed  Google Scholar 

  7. L. Wang, H. Song, L. Yuan, Z. Li, Y. Zhang, J.K. Gibson, L. Zheng, Z. Chai, W. Shi, Environ. Sci. Technol. 52, 10748–10756 (2018)

    CAS  PubMed  Google Scholar 

  8. S. Yang, M. Hua, L. Shen, X. Han, M. Xu, L. Kuang, D. Hua, J. Hazard. Mater. 354, 191–197 (2018)

    CAS  PubMed  Google Scholar 

  9. A.T. Kerr, S.A. Kumalah, K.T. Holman, R.J. Butcher, C.L. Cahill, J. Inorg. Organomet. Polym. 24, 128–136 (2014)

    CAS  Google Scholar 

  10. A.P. Golden, E.D. Ellis, S.S. Cohen, M.T. Mumma, R.W. Leggett, P.W. Wallace, D. Girardi, J.P. Watkins, R.E. Shore, J.D. Boice, Int. J. Radiat. Biol. (2019). https://doi.org/10.1080/09553002.2019.15697731-21

    Article  PubMed  Google Scholar 

  11. S. Zhivin, I. Canu, E. Davesne, E. Blanchardon, J.-P. Garsi, E. Samson, C. Niogret, L.B. Zablotska, D. Laurier, Occup. Environ. Med. 75, 270 (2018)

    PubMed  Google Scholar 

  12. Y. Hu, X. Wang, Y. Zou, T. Wen, X. Wang, A. Alsaedi, T. Hayat, X. Wang, Chem. Eng. J. 316, 419–428 (2017)

    CAS  Google Scholar 

  13. E.A. Imam, I.E.-T. El-Sayed, M.G. Mahfouz, A.A. Tolba, T. Akashi, A.A. Galhoum, E. Guibal, Chem. Eng. J. 352, 1022–1034 (2018)

    CAS  Google Scholar 

  14. P. Makowski, X. Deschanels, A. Grandjean, D. Meyer, G. Toquer, F. Goettmann, New J. Chem. 36, 531–541 (2012)

    CAS  Google Scholar 

  15. Y. Wang, Z. Liu, Y. Li, Z. Bai, W. Liu, Y. Wang, X. Xu, C. Xiao, D. Sheng, J. Diwu, J. Su, Z. Chai, T.E. Albrecht-Schmitt, S. Wang, J. Am. Chem. Soc. 137, 6144–6147 (2015)

    CAS  PubMed  Google Scholar 

  16. Y. Sun, J. Lan, M. Li, W. Hu, H. Liu, G. Song, D. Chen, W. Shi, X. Wang, Environ. Sci. NANO 5, 1981–1989 (2018)

    CAS  Google Scholar 

  17. W. He, J. Ma, J. Qian, H. Liu, D. Hua, J. Radioanal. Nucl. Chem. 316, 201–207 (2018)

    CAS  Google Scholar 

  18. M. Kapnisti, F. Noli, P. Misaelides, G. Vourlias, D. Karfaridis, A. Hatzidimitriou, Chem. Eng. J. 342, 184–195 (2018)

    CAS  Google Scholar 

  19. M. Paramanik, S. Panja, P.S. Dhami, J.S. Yadav, C.P. Kaushik, S.K. Ghosh, J. Hazard. Mater. 354, 125–132 (2018)

    CAS  PubMed  Google Scholar 

  20. L. Tan, X. Wang, X. Tan, H. Mei, C. Chen, T. Hayat, A. Alsaedi, T. Wen, S. Lu, X. Wang, Chem. Geol. (2017). https://doi.org/10.1016/j.chemgeo.2017.01.02491-100

    Article  Google Scholar 

  21. Z. Camtakan, S. Erenturk, S. Yusan, Environ. Prog. Sustain. Energy 31, 536–543 (2012)

    CAS  Google Scholar 

  22. J. Shen, A. Schäfer, Chemosphere 117, 679–691 (2014)

    CAS  PubMed  Google Scholar 

  23. K. Kiegiel, A. Abramowska, P. Biełuszka, G. Zakrzewska-Kołtuniewicz, S. Wołkowicz, J. Radioanal. Nucl. Chem. 311, 589–598 (2017)

    CAS  PubMed  Google Scholar 

  24. S. Wen, F.-X. Yang, Y. Gong, X.-L. Zhang, Y. Hui, J.-G. Li, A.-L. Liu, Y.-N. Wu, W.-Q. Lu, Y. Xu, Environ. Sci. Technol. 42, 4202–4207 (2008)

    CAS  PubMed  Google Scholar 

  25. R. Karan, K.C. Rajan, T. Sreenivas, Sep. Sci. Technol. 54, 1607–1619 (2019)

    CAS  Google Scholar 

  26. S. Abdi, M. Nasiri, A. Mesbahi, M.H. Khani, J. Hazard. Mater. 332, 132–139 (2017)

    CAS  PubMed  Google Scholar 

  27. S. Song, S. Huang, R. Zhang, Z. Chen, T. Wen, S. Wang, T. Hayat, A. Alsaedi, X. Wang, Chem. Eng. J. 325, 576–587 (2017)

    CAS  Google Scholar 

  28. Z.X. You, Y. Wang, M. Zhao, J.Y. Zhang, Y.H. Xing, F.Y. Bai, Desalin. Water Treat. 123, 253–264 (2018)

    CAS  Google Scholar 

  29. C. Kim, S.S. Lee, B.J. Reinhart, M. Cho, B. Lafferty, W. Li, J. Fortner, Environ. Sci. Nano 5, 2252–2256 (2018)

    CAS  Google Scholar 

  30. F. Yuan, C. Wu, Y. Cai, L. Zhang, J. Wang, L. Chen, X. Wang, S. Yang, S. Wang, Chem. Eng. J. 322, 353–365 (2017)

    CAS  Google Scholar 

  31. M. Khalil, T.Y. Mohamed, A. El-tantawy, J. Inorg. Organomet. Polym. Mater. 27, 757–769 (2017)

    CAS  Google Scholar 

  32. A. Abbasi, R. Davarkhah, A. Avanes, A. Yadollahi, M. Ghannadi-Maragheh, H. Sepehrian, J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01195-z

    Article  Google Scholar 

  33. M.F. Hamza, J.-C. Roux, E. Guibal, Chem. Eng. J. 344, 124–137 (2018)

    CAS  Google Scholar 

  34. Z. Chen, J. Wang, Z. Pu, Y. Zhao, D. Jia, H. Chen, T. Wen, B. Hu, A. Alsaedi, T. Hayat, X. Wang, Chem. Eng. J. 320, 448–457 (2017)

    CAS  Google Scholar 

  35. W. Li, L.D. Troyer, S.S. Lee, J. Wu, C. Kim, B.J. Lafferty, J.G. Catalano, J.D. Fortner, A.C.S. Appl, Mater. Interfaces 9, 13163–13172 (2017)

    CAS  Google Scholar 

  36. T. Zhang, B.-K. Ling, Y.-Q. Hu, T. Han, Y.-Z. Zheng, CrystEngComm 21, 3901–3905 (2019)

    Google Scholar 

  37. D. Yuan, Y. Wang, Y. Qian, Y. Liu, G. Feng, B. Huang, X. Zhao, J. Mater. Chem. A 5, 22735–22742 (2017)

    CAS  Google Scholar 

  38. F. Li, Z. Yang, H. Weng, G. Chen, M. Lin, C. Zhao, Chem. Eng. J. 332, 340–350 (2018)

    CAS  Google Scholar 

  39. L. Song, C.S. Diercks, Z. Yue-Biao, K. Nikolay, E.M. Nichols, Z. Yingbo, A.R. Paris, K. Dohyung, Y. Peidong, O.M. Yaghi, Science 349, 1208–1213 (2015)

    Google Scholar 

  40. J. Li, X. Yang, C. Bai, Y. Tian, B. Li, S. Zhang, X. Yang, S. Ding, C. Xia, X. Tan, L. Ma, S. Li, J. Colloid Interface Sci. 437, 211–218 (2015)

    CAS  PubMed  Google Scholar 

  41. S.-Y. Ding, M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 138, 3031–3037 (2016)

    CAS  PubMed  Google Scholar 

  42. A. Sharma, R. Babarao, N.V. Medhekar, A. Malani, Ind. Eng. Chem. Res. 57, 4767–4778 (2018)

    CAS  Google Scholar 

  43. M. Hidouri, S.V. Dorozhkin, N. Albeladi, J. Inorg. Organomet. Polym. 29, 87–100 (2019)

    CAS  Google Scholar 

  44. S. Elbasuney, A. Maraden, J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01260-7

    Article  Google Scholar 

  45. S. Elbasuney, J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01247-4

    Article  Google Scholar 

  46. A. Golmohamadpour, B. Bahramian, A. Shafiee, L. Ma’mani, J. Inorg. Organomet. Polym. 28, 1991–2000 (2018)

    CAS  Google Scholar 

  47. S. Wang, Z. Zhang, Q. Zhang, L. Li, J. Inorg. Organomet. Polym. 28, 2069–2079 (2018)

    CAS  Google Scholar 

  48. Z. Ruan, Y. Tian, J. Ruan, G. Cui, K. Iqbal, A. Iqbal, H. Ye, Z. Yang, S. Yan, Appl. Surf. Sci. 412, 578–590 (2017)

    CAS  Google Scholar 

  49. J. Liu, C. Zhao, Z. Zhang, J. Liao, Y. Liu, X. Cao, J. Yang, Y. Yang, N. Liu, Chem. Eng. J. 288, 505–515 (2016)

    CAS  Google Scholar 

  50. J. Kamieniak, P.J. Kelly, C.E. Banks, A.M. Doyle, J. Inorg. Organomet. Polym. 28, 84–91 (2018)

    CAS  Google Scholar 

  51. Z. Wang, L. An, W. Li, D. Zeng, Y. Zhou, G. Wang, Ind. Saf. Environ. Prot. (in Chinese) 41, 17–20 (2015)

    Google Scholar 

  52. W. Xiao, H. Fu, M.N. Rahaman, Y. Liu, B.S. Bal, Acta Biomater. 9, 8374–8383 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. D. Yuan, L. Chen, X. Xiong, L. Yuan, S. Liao, Y. Wang, Chem. Eng. J. 285, 358–367 (2016)

    CAS  Google Scholar 

  54. Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, N. Li, Chem. Eng. J. 157, 348–356 (2010)

    CAS  Google Scholar 

  55. X. Wang, Q. Fan, S. Yu, Z. Chen, Y. Ai, Y. Sun, A. Hobiny, A. Alsaedi, X. Wang, Chem. Eng. J. 287, 448–455 (2016)

    CAS  Google Scholar 

  56. D. Yang, S. Song, Y. Zou, X. Wang, S. Yu, T. Wen, H. Wang, T. Hayat, A. Alsaedi, X. Wang, Chem. Eng. J. 323, 143–152 (2017)

    CAS  Google Scholar 

  57. C. Zhang, Y. Liu, X. Li, H. Chen, T. Wen, Z. Jiang, Y. Ai, Y. Sun, T. Hayat, X. Wang, Chem. Eng. J. 346, 406–415 (2018)

    CAS  Google Scholar 

  58. D. Wang, Y. Xu, L. Yang, F. Wang, A.M. Asiri, K.A. Alamry, J. Mol. Liq. 258, 327–334 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants of the National Natural Science Foundation of China (No. 21571091), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, P. R. China (Project No. 191001-K), Commonwealth Research Foundation of Liaoning province in China (No. 20170055) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongheng Xing or Fengying Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Z., Zhang, N., Guan, Q. et al. High Sorption Capacity of U(VI) by COF-Based Material Doping Hydroxyapatite Microspheres: Kinetic, Equilibrium and Mechanism Investigation. J Inorg Organomet Polym 30, 1966–1979 (2020). https://doi.org/10.1007/s10904-019-01420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01420-9

Keywords

Navigation