Skip to main content
Log in

Development of solid phase radioimmunoassay system using new polymeric magnetic micro-spheres

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Magnetic particles were locally prepared by co-precipitation of Fe2+ and Fe3+ in an ammonia solution. The prepared microsphere were grafted with polyacrylamide acrylic acid by using gamma irradiation polymerization in presence of MBA as a cross linker. AFP antibody was immobilized on these beads and used as a solid phase in radioimmunoassay technique. The immunoreactivity of the developed assay was found to be influenced by different factors such as solid phase volume, incubation time, incubation temperature and storage period. A comparative study was performed between the developed assay system and others two ones. The maximum binding percent attained the value of 19.5% while the sensitivity was observed to be 1.3 IU/mL. The developed assay displayed acceptable precision estimated by repeated analysis of the quality control samples and the clinical samples analyzed by this assay showed a good correlation with that commercial kit (r = 0.998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berry CC, Wells S, Charles S, Curtis ASG (2003) Dextran albumin derivatised iron oxide nanoparticles influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557

    Article  CAS  Google Scholar 

  2. Gupta PK, Hung CT (1989) Magnetically controlled targeted microcarrier systems. Life Sci 44:175–186

    Article  CAS  Google Scholar 

  3. Ugelstad J, Stenstad P, Kilaas L, Prestvik WS, Herje R, Bererge A, Hornes E (1993) Monodisperse magneticpolymer particles. New biochemical and biomedical applications. Blood Purif 11:349–369

    Article  CAS  Google Scholar 

  4. Kawaguchi H, Fujimoto K, Nakazawa Y, Sakagawsa M, Ariyoshi Y, Shidara M, Okazaki H, Ebisawa Y (1996) Modification and functionalization of hydrogel microspheres. Colloids Surf A 109:147–154

    Article  CAS  Google Scholar 

  5. Sauzedde F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes 1. Adsorption of magneticiron oxide nanoparticles onto various cationic latexes. Colloid Polym Sci 277(9):846–855

    Article  CAS  Google Scholar 

  6. Sauzedde F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes 2. Encapsulation of adsorbed iron oxide nanoparticles. Colloid Polym Sci 277(11):1041–1050

    Article  CAS  Google Scholar 

  7. Furusawa K, Nagashima K, Anzai C (1994) Syntheticproc ess to control the total size and component distribution of multilayer magnetic composite particles. Colloid Polym Sci 272:1104

    Article  CAS  Google Scholar 

  8. Chatterjee J, Haik Y, Chen C-J (2001) Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magneticmic rospheres. J Magn Magn Mater 225(1–2):21–29

    Article  CAS  Google Scholar 

  9. Lee J, Isobe T, Senna M (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Colloid Interface Sci 177:490–494

    Article  CAS  Google Scholar 

  10. Gupta AK, Wells S (2004) Surface modified superparamagnetic nanoparticles for drug delivery: preparation, characterization and cytotoxicity studies. IEEE Trans Nanobiosci 3(1):66–73

    Article  Google Scholar 

  11. Yeh TC, Zhang W, Ldstad ST, Ho C (1993) Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med 30:617–625

    Article  CAS  Google Scholar 

  12. Handgretinger R, Lang P, Schumm M, Taylor G, Neu S, Koscielnak E, Niethammer D, Klingebiel T (1998) Isolation and transplantation of autologous peripheral CD34+ progenitor cells highly purified by magnetic-activated cell sorting. Bone Marrow Transplant 21:987–993

    Article  CAS  Google Scholar 

  13. Schoepf U, Marecos E, Jain R, Weissleder R (1998) Intracellular magnetic labelling of lymphocytes for in vivo trafficking studies. Biotechniques 24:642–651

    CAS  Google Scholar 

  14. Cuatrecasas P, Roth TF (eds) (1983) Receptor-mediated endocytosis. Kluwer Academic Publishers, Dordrecht [Hardbound, ISBN 0-412-24820-4]

  15. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A (1997) Magnetically labelled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263

    Article  CAS  Google Scholar 

  16. Bilbao G, Gomez-Navarro J, Curiel D (1998) In: Walden P et al (eds) Targeted adenoviral vectors for cancer gene therapy. Plenum Press, New York, pp 365–374

    Google Scholar 

  17. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  CAS  Google Scholar 

  18. Kemmner W, Moldenhauer G, Schlag P, Brossmer R (1992) Separation of tumor cells from a suspension of dissociated human colorectal carcinoma tissue by means of monoclonal antibody-coated magnetic beads. J Immunol Methods 147(2):197–200

    CAS  Google Scholar 

  19. Charles SW (1992) Magneticfluids (ferrofluids). In: Dormann JL, Fiorani D (eds) Magnetic properties of fine particles. Elsevier, North-Holland, pp 267–374

    Google Scholar 

  20. Gupta AK, Curtis ASG (2004) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25(15):3029–3040

    Article  CAS  Google Scholar 

  21. Sjogren CE, Briley-Saebo K, Hanson M, Johansson C (1994) Magnetic characterization of iron oxides for magnetic resonance imaging. Magn Reson Med 31(3):268–272

    Article  CAS  Google Scholar 

  22. Cornell RM, Schertmann U (1991) Iron oxides in the laboratory: preparation and characterization. VCH, Weinheim

    Google Scholar 

  23. Mohen RK, Kadwad V, Samuel G, Venkatesh M, Sivaprasad N (2006) Solid phase radioimmunoassay for testosterone in human serum using antibodies coupled to magnetizable cellulose. J Radioanal Nucl Chem 268(3):461–466

    Article  Google Scholar 

  24. Abdel-Ghany IY, Moustafa KA, El-Moatey A, El-Kolaly MT (2004) Development of solid phase anti-T3 and anti-T4 coated beads for detection of T3 and T4 hormones. J Nucl Sci Appl 1:172–181 (Arab special issue)

    Google Scholar 

  25. Başalp A, Mustafaeva Z, Mustafaev M, Bermek E (2000) Immune response to 17beta-estradiol involved in polymer gels: antigen specificity and affinity of hybridoma clones. Hybridoma 19(6):495–499

    Google Scholar 

  26. El-Kolaly MT, Mehany NL, Hassan SEM, Ayyoub SM (2006) Development, optimization and validation of one-step TSH-IRMA using solid phase anti-TSH magnetic particles. Arab J Nucl Sci Appl 39:2319–2333

    Google Scholar 

  27. Shafik HM, El-Mouhty NRA, El-Bayoumy AS, Abdel-ghany IY (2009) Production and evaluation of second antibody for radioimmunoassay technique. J Radioanal Nucl Chem 280(3):619–631

    Article  Google Scholar 

  28. Sallam KM, Abdel-Ghany IY, Moustafa KA (2008) Radiochemical studies on AFP radioimmunoassay solid phase coated beads. J Isot Rad Red 40(4):1277–1291

    Google Scholar 

  29. Mehany NL, El-Kolaly MT, Ayyoub SM, Hassan SEM (2005) Immunoradiometric assay for the in-vitro determination of thyroid stimulating hormone in human serum and plasma using solid phase anti-TSH cellulose particles. J Radioanal Nucl Chem 265(1):61–71

    Article  CAS  Google Scholar 

  30. Abdel-Fattah AA, Moustafa KA, El-Kollay MT (2004) Chemical kinetics of progesterone radioimmunoassay system. Arab J Nucl Sci Appl 37(2):101–110

    Google Scholar 

  31. El-Kolaly MT, Mehany NL, Ayyoub SM, Hassan SEM (2005) Solid phase radioimmunoassay for measuring serum triiodothyronine and thyroxine using different preparation of their labeled hormones. Arab J Nucl Sci Appl 38(3):229–239

    Google Scholar 

  32. Shafik HM (2009) Immunoradiometric assay for in vitro determination of prolactin hormone in human serum or plasma using solid phase anti-prolactin cellulose particles. J Radioanal Nucl Chem 281(3):639–646

    Article  CAS  Google Scholar 

  33. Anjani NR, Vrinda PC, Sivaprasad N (2011) Solid phase immunoradiometric assay for CA125 antigen levels in blood using monoclonal antibodies. J Radioanal Nucl Chem 288:31–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. M. Sallam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sallam, K.M., Sheha, R.R. & El-Zahhar, A.A. Development of solid phase radioimmunoassay system using new polymeric magnetic micro-spheres. J Radioanal Nucl Chem 290, 339–345 (2011). https://doi.org/10.1007/s10967-011-1188-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1188-6

Keywords

Navigation