Skip to main content
Log in

Adsorption of Hexavalent Chromium using Natural Goethite: Isotherm, Thermodynamic and Kinetic Study

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

This paper examines the potential of natural goethite as an adsorbent for removing Cr(VI) from the aqueous solution through adsorption isotherms, thermodynamics and kinetics study. The study is based on the batch experiments as a function of initial Cr(VI) concentrations, contact time, pH and temperature at fixed solid/solution ratio. The pH has pronounced effect on process of removal and removal is higher in lower pH range, maximum (99.14 %) being at pH 2. The adsorption of Cr(VI) onto goethite is endothermic in nature and therefore, higher temperature favours the uptake. The adsorbent capacity was determined using Langmuir, Freundlich, Dubinin–Radushkevich and Temkin adsorption isotherm models. The results showed that the adsorption fits best to the Langmuir isotherm model with the adsorption capacity 0.727 mg/g. Pseudo-first-order kinetic, pseudo-second-order kinetic and intraparticle diffusion were used to analyze the adsorption kinetic at different initial Cr(VI) concentrations. The kinetic study indicated that the pseudosecond order model explained the adsorption mechanism and intra-particle diffusion was found to be the rate-controlling step. The negative values of Gibb’s free energy explained that the adsorption was feasible and spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, J., Sahu, J.N., Sahoo, B.K., Mohanty C.R. and Meikap, B.C. (2009) Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem. Engg. Jour., v.150, pp.25–39.

    Article  Google Scholar 

  • Ajouyed, O., Hurel, C., Ammari, M., Allal, L. B. and Marmier, N. (2010) Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration. Jour. Hazard. Mater., v.174, pp.616–622.

    Article  Google Scholar 

  • Akar, S.T., Yetimoglu, Y. and Gedikbey, T. (2009) Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification. Desalination, v.244, pp.97–108.

    Article  Google Scholar 

  • Akçay, M. (2006) Characterization and adsorption properties of tetrabutyl ammonium montmorillonite (TBAM) clay: Thermodynamic and kinetic calculations. Jour. Colloid Interface Sci., v.296, pp.16–21.

    Article  Google Scholar 

  • Albadarin, A. B., Mangwandi, C., Al-Muhtaseb, A., Walker, G.M., Allen, S.J. and Ahmad, M.N.M. (2012) Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Engg. Jour., v.179, pp.193–202.

    Article  Google Scholar 

  • Anupama, K., Dutta, S., Bhattacharjee, C. and Datta, S. (2011) Adsorptive removal of chromium (VI) from aqueous solution over powdered activated carbon: Optimisation through response surface methodology. Chem. Engg. Jour., v.173, pp.135–143.

    Article  Google Scholar 

  • APHA (2012) Standard Methods for Examination of water and wastewater. American Public Health Association, Washington, 22nd Edition, pp.1360.

  • Baig, S.A., Wang, Q., Wang, Z., Zhu, J., Lou, Z, Sheng, T. and Xu, X. (2014) Hexavalent chromium removal from solutions: Surface efficacy and characterizations of three iron containing minerals. Clean Soil Air Water, v.42, pp.1409–1414.

    Article  Google Scholar 

  • Baig, S.A., Wang, Q., Lv, X. and Xu, X. (2013) Removal of hexavalent chromium by limonite in aqueous solutions. Hydrometallurgy, v.138, pp.33–39.

    Article  Google Scholar 

  • Baral, S. S., Das, N., Chaudhury, G.R. and Das, S.N. (2009) A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrillaverticillata. Jour. Hazard. Mater., v.171, pp.358–369.

    Article  Google Scholar 

  • Baral, S.S., Das, S.N., Rath, P. and Chaudhury, G.R. (2007) Chromium(VI) removal by calcined bauxite. Biochem. Engg. Jour., v.34, pp.69–75.

    Article  Google Scholar 

  • Brdar, M., Šæiban, M., Takaèi, A. and Došenoviæ, T. (2012) Comparison of two and three parameters adsorption isotherm for Cr(VI) onto Kraft lignin. Chem. Engg. Jour., v.183, pp.108–111.

    Article  Google Scholar 

  • Buerge, I. J. and Hug, S. J. (1999) Influence of mineral surfaces on chromium (VI) reduction by iron(II). Environ. Sci. Tech., v.33, pp.4285–4291.

    Article  Google Scholar 

  • Choppala, G., Bolan, N. and Seshadri, B. (2013) Chemodynamics of chromium reduction in soils: Implications to bioavailability. Jour. Hazard. Mater., v.261, pp.718–724.

    Article  Google Scholar 

  • Chowdhury, S.R. and Yanful, E.K. (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. Jour. Environ. Managmt., v.91, pp.2238–2247.

    Article  Google Scholar 

  • Doke, K., Khan, E. and Gaikwad, V. (2013) Diffusion mechanisms of biosorption of Cr(VI) onto powdered cotton stalk. Jour. Dispersion Sci. Technol., v.34, pp.1347–1355.

    Article  Google Scholar 

  • Dubey, S.P. and Gopal, K. (2007) Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: A comparative study. Jour. Hazard. Mater., v.145, pp.465–470.

    Article  Google Scholar 

  • EPA (1990) Environmental pollution control alternatives: Drinking water treatment for small communities. Technology Transfer, EPA/625/5-90/025.

  • Erdem M., Gur F. and Tümen F. (2004) Cr(VI) reduction in aqueous solutions by siderite. Jour. Hazard. Mater., v.113, pp.217–222.

    Article  Google Scholar 

  • Fendorf, S.E. (1995) Surface reactions of chromium in soils and waters. Geoderma, v.67, pp.55–71.

    Article  Google Scholar 

  • Fritzen, M.B., Souza, A.J., Silva, T.A.G., Souza, L., Nome, R.A., Fiedler, H. D. and Nome, F. (2006) Distribution of hexavalent Cr species across the clay mineral surface–water interface. Jour. Colloid Interface Sci., v.296, pp.465–471.

    Article  Google Scholar 

  • Granados-Correa, F. and Jiménez-Becerril, J. (2009) Chromium (VI) adsorption on boehmite. Jour. Hazard. Mater., v.162, pp.1178–1184.

    Article  Google Scholar 

  • Hu, J., Chen, C., Zhu, X. and Wang, X. (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. Jour. Hazard. Mater., v.162, pp.1542–1550.

    Article  Google Scholar 

  • Hyder, A.H.M.G., Begum, S.A. and Egiebor, N.O. (2014) Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. Jour. Environ. Chem. Engg., v.3, pp.1329–1336.

    Article  Google Scholar 

  • Jung, C., Heo, J., Han, J., Her, N., Lee, S., Oh, J., Ryu, J. and Yoon, Y. (2013) Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep. Purif. Techl., v.106, pp.63–71.

    Article  Google Scholar 

  • Khezami, L. and Capart, R. (2005) Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. Jour. Hazard. Mater., v.123, pp.223–231.

    Article  Google Scholar 

  • Kim, C., Lan, Y. and Deng, B. (2007) Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction. Geochem. Jour., v.41, pp.397–405.

    Article  Google Scholar 

  • Khan, S.A., Rehman, R.U. and Khan, M.A. (1995) Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Managmt., v.15, pp.271–282.

    Article  Google Scholar 

  • Korus, I. and Loska, K. (2009) Removal of Cr(III) and Cr(VI) ions from aqueous solutions by means of polyelectrolyte-enhanced ultrafiltration. Desalination, v.247, pp.390–395.

    Article  Google Scholar 

  • Kulkarni, P. S., Kalyani, V., and Mahajani, V. V. (2007) Removal of hexavalent chromium by membrane-based hybrid processes. Ind. Engg. Chem. Res., v.46, pp.8176–8182.

    Article  Google Scholar 

  • Lazaridis, N.K., Bakoyannakis, D.N. and Deliyanni, E.A. (2005) Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganéite. Chemosphere, v.58, pp.65–73.

    Article  Google Scholar 

  • Malkoc, E. and Nuhoglu, Y. (2007) Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste acorn of Quercus ithaburensis. Chem. Eng. Process., v.46, pp.1020–1029.

    Article  Google Scholar 

  • Mitra, S., Thakur L.S., Rathore, V.K. and Mondal, P. (2016) Removal of Pb(II) and Cr(VI) by laterite soil from synthetic waste water: single and bicomponent adsorption approach. Desalination Water Treat., v.57, pp.18406–18416.

    Article  Google Scholar 

  • Mohapatra, B.K., Jena, S., Mahanta, K. and Mishra, P. (2007) Goethite morphology and composition in Banded Iron Formation, Orissa, India. Resour. Geol., v.58(3), pp.325–332.

    Article  Google Scholar 

  • Mor, S., Ravindra, K. and Bishnoi, N.R. (2007) Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresour. Tech., v.98, pp.954–957.

    Article  Google Scholar 

  • Namasivayam, C. and Sureshkumar, M.V. (2008) Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour. Tech., v.99, pp.2218–2225.

    Article  Google Scholar 

  • Namasivayam, C. and Yamuna, R.T. (1995) Adsorption of chromium (VI) by a low-cost adsorbent: biogas residual slurry. Chemosphere, v.30, pp.561–578.

    Article  Google Scholar 

  • Nemr, A. E., Khaled, A., Abdelwahab, O. and El-Sikaily, A. (2008) Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. Jour. Hazard. Mater., v.152, pp.263–275.

    Article  Google Scholar 

  • Olu-Owolabi, B. I., Diagboya, P. N. and Adebowale, K. O. (2014) Evaluation of pyrene sorption-desorption on tropical soils. Jour. Environ. Managmt., v.137, pp.1–9.

    Article  Google Scholar 

  • Panda, M., Bhowal, A. and Datta, S. (2011) Removal of hexavalent chromium by biosorption process in rotating packed bed. Environ. Sci. Tech., v.45, pp.8460–8466.

    Article  Google Scholar 

  • Qiu, B., Xu, C., Sun, D., Wang, Q., Gu, H., Zhang, X, Weeks, B. L., Hopper, J., Ho, T. C., Guo, Z. and Wei, S. (2015) Polyaniline coating with various substrates for hexavalent chromium removal. Appl. Surf. Sci., v.334, pp.7–14.

    Article  Google Scholar 

  • Qurie, M., Khamis, M., Manassra, A., Ayyad, I., Nir, S., Scrano, L., Bufo, S.A. and Karaman, R. (2013) Removal of Cr(VI) from aqueous environments using micelle-clay. Sci. World Jour., v.942703, pp.7.

    Google Scholar 

  • Rad, S.A.M., Mirbagheri, S.A. and Mohammadi, T. (2009) Using reverse osmosis membrane for chromium removal from aqueous solution. Int. Jour. Chem. Mol. Nucl. Mater. Metall. Engg., v.3, pp.9.

    Google Scholar 

  • Rai, D., Eary, L.E. and Zachara, J.M. (1989) Environmental chemistry of chromium. Sci. Total Environ., v.86, pp.15–23.

    Article  Google Scholar 

  • Ramos-Ramírez, E., Ortega, N.L. G., Soto, C.A.C. and Gutiérrez, M.T.O. (2009) Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol–gel hydrotalcite-like compounds. Jour. Hazard. Mater., v.172, pp.1527–1531.

    Article  Google Scholar 

  • Rao, F., Song, S. and Lopez-Valdivieso, A. (2012) Specific adsorption of chromium species on kaolinite surface. Miner. Process. Extr. Metall. Rev., v.33, pp.180–189.

    Article  Google Scholar 

  • Selen, V., Özer, D. and Özer, A. (2014) A study on the removal of Cr(VI) ions by sesame (sesamumindicum) stems dehydrated with sulfuric acid. Arab. Jour. Sci. Engg., v.39, pp.5895–5904.

    Article  Google Scholar 

  • Sharma, Y.C. (2001) Effect of temperature on interfacial adsorption of Cr(VI) on wollastonite. Jour. Colloid Interface Sci., v.233, pp.265–270.

    Article  Google Scholar 

  • Singh, D.B., Rupainwar, D.C. and Prasad, G. (1992) Studies on the removal of Cr(VI) from wastewater by feldspar. Jour. Chem. Tech. Biotechnol., v.53, pp.127–131.

    Article  Google Scholar 

  • Shi, T., Wang, Z., Liu, Y., Jia, S. and Changming, D. (2009) Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. Jour. Hazard. Mater., v.161, pp.900–906.

    Article  Google Scholar 

  • Singha, B., Naiya, T. K., Bhattacharya, A. K. and Das, S.K. (2011) Cr(VI) ions removal from aqueous solutions using natural adsorbents—FTIR studies. Jour. Environ. Prot., v.2, pp.729–735.

    Article  Google Scholar 

  • Song, X. and Wu, Y. (2014) Simultaneous adsorption of chromium (VI) and phosphate by calcined Mg-Al-CO3 layered double hydroxides. Bull. Korean Chem. Soc., v.35, pp.1817–1824.

    Article  Google Scholar 

  • Turan, M.D. and Altundogan, H.S. (2014) A study on Cr(VI) reduction from aqueous solutions from bauxite. Jour. Cent. South Univ., v.21, pp.1961–1967.

    Article  Google Scholar 

  • Wang, W., Li, M. and Zeng, Q. (2012) Thermodynamics of Cr(VI) adsorption on strong alkaline anion exchange fiber. Trans. Nonferrous Met. Soc. China, v.22, pp.2831–2839.

    Article  Google Scholar 

  • Weng, C., Sharma, Y.C. and Chu, S. (2008) Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Jour. Hazard. Mater., v.155, pp.65–75.

    Article  Google Scholar 

  • Weng, C.H., Wang, J.H. and Huang, C.P. (1997) Adsorption of Cr(VI) onto TiO2 from dilute aqueous solutions. Wat. Sci. Tech., v.35, pp.55–62.

    Article  Google Scholar 

  • Wu, S., Lu, J., Ding, Z., Li, N., Fu, F. and Tang, B. (2016) Cr(VI) removal by mesoporous FeOOH polymorphs:performance and mechanism. RSC Adv., v.6, pp.82118–82130.

    Article  Google Scholar 

  • Xiaohong, Y., Lijun, Z., Baiwei, G. and Shouyang, H. (2009) A study on the adsorption of chromium on laterite from Guizhou Province, China. Chin. Jour. Geochem., v.28, pp.220–226.

    Article  Google Scholar 

  • Yang, C. and Kravets, G. (2000) Removal of chromium from abrasive blast media by leaching and electrochemical precipitation. Jour. Air Waste Manage. Assoc., v.50, pp.536–542.

    Article  Google Scholar 

  • Zachara, J.M., Cowan, C.E., Schmidt, R.L. and Ainsworth, C.C. (1988) Chromate adsorption by kaolinite. Clays Clay Miner., v.36, pp.317–326.

    Article  Google Scholar 

  • Zachara, J.M., Girvin, D.C., Schmidt, R.L. and Resch, C.T. (1987) Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ. Sci. Tech., v.21, pp.589–594.

    Article  Google Scholar 

  • Zhao, Y., Shen, H., Pan, S., Hu, M. and Xia, Q. (2010) Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium(VI) ions. Jour. Mater. Sci., v.45, pp.5291–5301.

    Article  Google Scholar 

  • Zhao, Y., Yang, S., Ding, D., Chen, J., Yang, Y., Lei, Z., Feng, C. and Zhang, Z. (2013) Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. Jour. Colloid Interface Sci., v.395, pp.198–204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Md. Equeenuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, S., Equeenuddin, S.M. Adsorption of Hexavalent Chromium using Natural Goethite: Isotherm, Thermodynamic and Kinetic Study. J Geol Soc India 93, 285–292 (2019). https://doi.org/10.1007/s12594-019-1175-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1175-z

Navigation