Skip to main content
Log in

Methods and software for predicting germanium detector absolute full-energy peak efficiencies

  • Review
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

High-purity germanium (HPGe) and lithium drifted germanium (Ge(Li)) detectors have been the detector of choice for high resolution gamma-ray spectroscopy for many years. This is primarily due to the superior energy resolution that germanium detectors present over other gamma-ray detectors. In order to perform quantitative analyses with germanium detectors, such as activity determination or nuclide identification, one must know the absolute full-energy peak efficiency at the desired gamma-ray energy. Many different methods and computer codes have been developed throughout history in an effort to predict these efficiencies using minimal or no experimental observations. A review of these methods and the computer codes that utilize them is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Knoll, Radiation Detection and Measurement, 3rd ed., John Wiley & Sons, New Jersey, 2000, p. 405.

    Google Scholar 

  2. F. S. Goulding, Nucl. Instr. Meth., 43 (1966) 1.

    Article  CAS  Google Scholar 

  3. J. W. Mayer, Nucl. Instr. Meth., 43 (1966) 55.

    Article  CAS  Google Scholar 

  4. J. M. Hollander, Nucl. Instr. Meth., 43 (1966) 65.

    Article  CAS  Google Scholar 

  5. B. Kahn, W. S. Lyon, Nucleonics, 11 (1953) 61.

    CAS  Google Scholar 

  6. R. L. Heath, USAEC Report IDO-16408, 1957.

  7. S. H. Vegors, L. L. Marsden, R. L. Heath, USAEC Report IDO-16370, 1958.

  8. C. C. Grosjean, Nucl. Instr. Meth., 17 (1962) 289.

    Article  Google Scholar 

  9. R. L. Heath, USAEC Report IDO-16880, 1964.

  10. L. Ya. Graudynya, Yu. R. H. Kalnyn, L. L. Pelekis, J. Radioanal. Chem., 9 (1971) 341.

    Article  Google Scholar 

  11. S. N. Kaplanis, Intern. J. Appl. Radiation Isotopes, 29 (1978) 543.

    Article  Google Scholar 

  12. H. P. Hotz, J. M. Mathiesen, J. P. Hurley, Nucl. Instr. Meth., 37 (1965) 93.

    Article  CAS  Google Scholar 

  13. D. C. Camp, A. L. Van Lehn, Nucl. Instr. Meth., 76 (1969) 192.

    Article  CAS  Google Scholar 

  14. R. Griffiths, Nucl. Instr. Meth., 91 (1971) 377.

    Article  CAS  Google Scholar 

  15. K. M. Wainio, G. F. Knoll, Nucl. Instr. Meth., 44 (1966) 213.

    Article  CAS  Google Scholar 

  16. G. T. Ewan, A. J. Tavendale, Can. J. Phys., 42 (1964) 2286.

    CAS  Google Scholar 

  17. J. M. Freeman, J. G. Jenkin, Nucl. Instr. Meth., 43 (1966) 269.

    CAS  Google Scholar 

  18. D. F. Crisler, J. J. Jarmer, H. B. Eldridge, Nucl. Instr. Meth., 94 (1971) 285.

    Article  CAS  Google Scholar 

  19. R. Gunnink, J. B. Niday, USAEC Report UCRL-51061 (1972).

  20. J. E. Cline, Computers in Activation Analysis and Gamma-ray Spectroscopy, Proc. ANS Topical Conf., Mayaguez, Puerto Rico, 1978, p. 185.

  21. A. Notea, Nucl. Instr. Meth., 91 (1971) 513.

    CAS  Google Scholar 

  22. H. Baba, A. Yokoyama, Y. Sakuraba, N. Nitani, T. Saito, S. Baba, Nucl. Instr. Meth. Phys. Res., A309 (1991) 236.

    CAS  Google Scholar 

  23. H. Yucel, M. Atif Cetiner, H. Demirel, Appl. Radiation Isotopes, 47 (1996) 535.

    Article  Google Scholar 

  24. R. Gunnink, Nucl. Instr. Meth. Phys. Res., A299 (1990) 372.

    CAS  Google Scholar 

  25. R. Gunnink, A. L. Prindle, J. Radioanal. Nucl. Chem., 160 (1992) 305.

    Article  CAS  Google Scholar 

  26. A. P. Kushelevski, Z. B. Alfassi, Nucl. Instr. Meth., 131 (1975) 93.

    Article  Google Scholar 

  27. M. Noguchi, K. Takeda, H. Higuchi, Intern. J. Appl. Radiation Isotopes, 32 (1981) 17.

    Article  CAS  Google Scholar 

  28. H. Chatani, Nucl. Instr. Meth. Phys. Res., A425 (1999) 291.

    Google Scholar 

  29. F. Cejnar, I. Kovar, Intern. J. Appl. Radiation Isotopes, 31 (1980) 79.

    Article  CAS  Google Scholar 

  30. L. Moens, J. De Donder, L. Xilei, F. De Corte, A. De Wispelaere, A. Simonits, J. Hoste, Nucl. Instr. Meth., 187 (1981) 451.

    Article  CAS  Google Scholar 

  31. L. Moens, J. Hoste, Intern. J. Appl. Radiation Isotopes, 34 (1983) 1085.

    Article  CAS  Google Scholar 

  32. F. Ugletveit, H. Aaltonen, K. Sinkko, Regional Congress of the International Radiation Protection Association (IRPA) on the Radioecology of Natural and Artificial Radionuclides, Visby, Sweden, 1989, p. 474.

  33. S. Jovanovic, A. Dlabac, N. Mihaljevic, P. Vukotic, J. Radioanal. Nucl. Chem., 218 (1997) 13.

    Article  CAS  Google Scholar 

  34. P. Vukotic, N. Mihaljevic, S. Jovanovic, S. Dapcevic, F. Boreli, J. Radioanal. Nucl. Chem., 218 (1997) 21.

    Article  CAS  Google Scholar 

  35. F. Piton, M. C. Lepy, M. M. Be, J. Plagnard, Appl. Radiation Isotopes, 52 (2000) 791.

    Article  CAS  Google Scholar 

  36. K. R. Jackman, PhD Dissertation, The University of Texas at Austin, 2007.

  37. S. H. Jiang, J. H. Jiang, J. T. Chou, U. T. Lin, W. W. Yeh, Nucl. Instr. Meth. Phys. Res. A, 413 (1998) 281.

    Article  CAS  Google Scholar 

  38. T. Vidmar, Nucl. Instr. Meth. Phys. Res., A550 (2005) 603.

    Google Scholar 

  39. M. C. Lepy, T. Altzitzoglou, D. Arnold, F. Bronson, R. C. Noy, M. Decombaz, F. De Corte, R. Edelmaier, E. H. Peraza, S. Klemola, M. Korun, M. Kralik, H. Neder, J. Plagnard, S. Pomme, J. De Sanoit, O. Sima, F. Ugletveit, L. Van Velzen, T. Vidmar, Appl. Radiation Isotopes, 55 (2001) 493.

    Article  CAS  Google Scholar 

  40. K. R. Jackman, Master’s Thesis, The University of Texas at Austin, 2004.

  41. S. Hurtado, M. Garcia-Leon, R. Garcia-Tenorio, Nucl. Instr. Meth. Phys. Res., A518 (2004) 764.

    Google Scholar 

  42. I. O. B. Ewa, D. Bodizs, Sz. Czifrus, Zs. Molnar, Appl. Radiation Isotopes, 55 (2001) 103.

    Article  CAS  Google Scholar 

  43. J. Rodenas, A. Pascual, I. Zarza, V. Serradell, J. Ortiz, L. Ballesteros, Nucl. Instr. Meth. Phys. Res., A496 (2003) 390.

    Google Scholar 

  44. D. Karamanis, V. Lacoste, S. Andriamonje, G. Barreau, M. Petit, Nucl. Instr. Meth. Phys. Res., A487 (2002) 477.

    Google Scholar 

  45. M. J. Vargas, A. F. Timon, N. C. Diaz, D. P. Sanchez, J. Radioanal. Nucl. Chem., 253 (2002) 439.

    Article  CAS  Google Scholar 

  46. R. M. Kippen, New Astron. Rev., 48 (2004) 221.

    Article  Google Scholar 

  47. O. Sima, D. Arnold, C. Dovlete, J. Radioanal. Nucl. Chem., 248 (2001) 359.

    Article  CAS  Google Scholar 

  48. K. Debertin, B. Grosswendt, Nucl. Instr. Meth., 203 (1982) 343.

    Article  CAS  Google Scholar 

  49. J. M. Laborie, G. Le Petit, D. Abt, M. Girard, Appl. Radiation Isotopes, 53 (2000) 57.

    Article  CAS  Google Scholar 

  50. N. C. Diaz, D. P. Sanchez, IV Congreso Regional IRPA sobre Seguridad Radiologica y Nuclear, Habana, Cuba, 1998, p. 99.

  51. M. J. Vargas, N. C. Diaz, D. P. Sanchez, Appl. Radiation Isotopes, 58 (2003) 707.

    Article  CAS  Google Scholar 

  52. M. J. Vargas, A. L. Guerra, Appl. Radiation Isotopes, 64 (2006) 1319.

    Article  CAS  Google Scholar 

  53. R. Venkataraman, F. Bronson, V. Atrashkevich, M. Field, B. M. Young, J. Radioanal. Nucl. Chem., 264 (2005) 213.

    Article  CAS  Google Scholar 

  54. D. A. W. Bossus, J. J. J. M. Swagten, P. A. M. Kleinjans, Nucl. Instr. Meth. Phys. Res., A564 (2006) 650.

    Google Scholar 

  55. L. Moens, F. De Corte, A. Simonits, L. Xilei, A. De Wispelaere, J. De Donder, J. Hoste, J. Radioanal. Chem., 70 (1982) 539.

    Article  CAS  Google Scholar 

  56. N. Mihaljevic, S. Jovanovic, F. De Corte, B. Smodis, R. Jacimovic, G. Medin, A. De Wispelaere, P. Vukotic, P. Stegnar, J. Radioanal. Nucl. Chem., 169 (1993) 209.

    Article  CAS  Google Scholar 

  57. H. Aaltonen, S. Klemola, F. Ugletveit, Nucl. Instr. Meth. Phys. Res., A339 (1994) 87.

    Google Scholar 

  58. J. Lippert, Intern. J. Appl. Radiation Isotopes, 34 (1983) 1097.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Jackman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackman, K.R., Biegalski, S.R. Methods and software for predicting germanium detector absolute full-energy peak efficiencies. J Radioanal Nucl Chem 279, 355–360 (2009). https://doi.org/10.1007/s10967-007-7318-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-7318-0

Keywords

Navigation