Skip to main content
Log in

Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The analysis of impurities in uranium matrices is performed in a variety of fields, e.g., for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1–7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Society for Testing Materials International (ASTM), Standard Test Method for Determination of Impurities in Nuclear Grade Uranium Compounds by Inductively Coupled Plasma Mass Spectrometry, Designation: C 1287-03, West Conshohocken, PA, United States.

  2. D. Berkovits, H. Feldstein, S. Ghelberg, A. Hershkowitz, E. Navon, M. Paul, Nucl. Instr. Meth. Phys. Res., B172 (2000) 372.

    Article  Google Scholar 

  3. M. Bett, G. Tamborini, L. Koch, Anal. Chem., 71 (1999) 2616.

    Article  Google Scholar 

  4. S. F. Boulyga, C. Testa, D. Desideri, J. S. Becker, J. Anal. At. Spectrom., 16 (2001) 1283.

    Article  CAS  Google Scholar 

  5. S. Bürger, L. R. Riciputi, S. Turgeon, D. Bostick, E. Mcbay, M. Lavelle, Abstract Plutonium Futures 06 Conference (2006) accepted.

  6. G. A. Cowan, H. H. Adler, Geochim. Cosmochim. Acta, 40 (1976) 1487.

    Article  CAS  Google Scholar 

  7. I. W. Croudace, P. E. Warwick, R. N. Taylor, A. B. Cundy, Environ. Sci. Technol., 34 (2000) 4496.

    Article  CAS  Google Scholar 

  8. D. L. Donohue, J. Alloys Comp., 271–273 (1998) 11.

    Article  Google Scholar 

  9. V. N. Dwivedi, P. L. Mahanta, A. Premadas, J. Radioanal. Nucl. Chem., 258 (2003) 575.

    Article  CAS  Google Scholar 

  10. N. Goyal, P. J. Purohit, A. R. Dhobale, B. M. Patel, A. G. Page, M. D. Sastry, J. Anal. At. Spectrom., 2 (1987) 459.

    Article  CAS  Google Scholar 

  11. R. Gupta, V. M. Pandey, S. R. Pranesh, A. B. Chakravarty, Hydrometallurgy, 71 (2004) 429.

    Article  CAS  Google Scholar 

  12. K. G. Heumann, Anal. Bioanal. Chem., 378 (2004) 318.

    Article  CAS  Google Scholar 

  13. M. Hotchkis, D. Child, C. Tuniz, J. Nuc. Sci. Technol., Supplement 3 (2002) 532.

    Google Scholar 

  14. J. R. Lamarsh, J. A. Baratta, Introduction to Nuclear Engineering, 3rd ed., Upper Saddle River, N.J. Prentice Hall, 2001.

  15. R. Leifert, Z. R. Juzdan, W. R. Kelly, J. D. Fassett, K. R. Eberhardt, Science, 238 (1987) 512.

    Article  Google Scholar 

  16. O. C. Lind, B. Albu, K. Janssens, K. Proost, H. Dahlgaard, J. Environ. Radioact., 81 (2005) 21.

    Article  CAS  Google Scholar 

  17. K. Mayer, M. Wallenius, I. Ray, Analyst, 130 (2005) 433.

    Article  CAS  Google Scholar 

  18. V. P. Mironov, J. L. Matusevich, V. P. Kudrjashov, P. I. Ananich, V. V. Zhuravkov, S. F. Boulyga, J. S. Becker, Radiochim. Acta, 93 (2005) 781.

    Article  CAS  Google Scholar 

  19. A. H. Mohagheghi, S. T. Shanks, J. A. Zigmond, G. L. Simmons, S. L. A. Ward, J. Radioanal. Nucl. Chem., 263 (2005) 189.

    Article  CAS  Google Scholar 

  20. K. J. Moody, I. D. Hutcheon, P. M. Grant, Nuclear Forensic Analysis, CRC Press, Taylor & Francis Group, 2005, p. 167.

  21. New Brunswick Laboratory, Provisional Certificate of Analysis, CRM No. 124(1–7), 1983.

  22. S. Niemeyer, L. Koch, Advances in Destructive and Nondestructive Analysis for Environmental Monitoring and Nuclear Forensics, IAEA-CN-98/3, 2003, p. 17.

  23. O. P. Oliveira Junior, J. E. S. Sarkis, J. Radional. Nucl. Chem., 254 (2002) 519.

    Article  CAS  Google Scholar 

  24. L. Pajo, K. Mayer, L. Koch, Fresenius J. Anal. Chem., 371 (2001) 348.

    Article  CAS  Google Scholar 

  25. L. Pajo, A. Schubert, L. Aldave, L. Koch, Yu. K. Bibilashvili, Yu, N. Dolgov, N. A. Chorokhov, J. Radioanal. Nucl. Chem., 250 (2001) 79.

    Article  CAS  Google Scholar 

  26. A. Premadas, P. K. Srivastava, J. Radioanal. Nucl. Chem., 251 (2002) 233.

    Article  CAS  Google Scholar 

  27. S. J. Ray, G. M. Hieftje, J. Anal. At. Spectrom., 16 (2001) 1206.

    Article  CAS  Google Scholar 

  28. I. L. F. Ray, A. Schubert, M. Wallenius, Advances in Destructive and Non-destructive Analysis for Environmental Monitoring and Nuclear Forensics, IAEA-CN-98/82P, 2003, p. 371.

  29. S. Richter, A. Alonso, W. De Bolle, R. Wellum, P. D. P. Taylor, J. Intern. J. Mass Spectrom., 193 (1999) 9.

    Article  CAS  Google Scholar 

  30. B. Salbu, K. Janssens, O. C. Lind, K. Proost, L. Gijsels, P. R. Danesi, J. Environ. Radioact., 78 (2005) 125.

    Article  CAS  Google Scholar 

  31. P. M. Santoliquido, J. Res. Nat. Bureau Standards, 93 (1988) 452.

    CAS  Google Scholar 

  32. G. S. Solovyev, A. V. Saprygin, V. M. Golik, S. V. Golik, N. V. Kuzmina, Yu. M. Kukushkin, At. Energiya, 96 (2005) 444.

    Google Scholar 

  33. G. Tamborini, M. Wallenius, O. Bildstein, L. Pajo, M. Betti, Microchim. Acta, 139 (2002) 185.

    Article  CAS  Google Scholar 

  34. M. Wallenius, A. Morgenstern, C. Apostolidis, K. Mayer, Anal. Bioanal. Chem., 374 (2002) 379.

    Article  CAS  Google Scholar 

  35. M. Wallenius, K. Mayer, I. Ray, Forensic Sci. Intern., 156 (2006) 55.

    Article  CAS  Google Scholar 

  36. T. Warneke, I. W. Croudace, P. E. Warwick, R. N. Taylor, Earth Planetary Sci. Lett., 203 (2002) 1047.

    Article  CAS  Google Scholar 

  37. S. F. Wolf, D. L. Bowers, J. C. Cunnane, J. Radioanal. Nucl. Chem., 263 (2005) 581.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bürger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürger, S., Riciputi, L.R. & Bostick, D.A. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method. J Radioanal Nucl Chem 274, 491–505 (2007). https://doi.org/10.1007/s10967-006-6930-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-006-6930-0

Keywords

Navigation