Skip to main content
Log in

Isotope-dilution ICP–MS for trace element determination and speciation: from a reference method to a routine method?

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This critical review discusses the conditions under which inductively coupled plasma–isotope dilution mass spectrometry (ICP–IDMS) is suitable as a routine method for trace element and element-speciation analysis. It can, in general, be concluded that ICP–IDMS has high potential for routine analysis of trace elements if the accuracy of results is of predominant analytical importance. Hyphenated techniques with ICP–IDMS suffer both from lack of commercially available isotope-labeled spike compounds for species-specific isotope dilution and from the more complicated system set-up required for species-unspecific ICP–IDMS analysis. Coupling of gas or liquid chromatography with species-specific ICP–IDMS, however, enables validation of analytical methods involving species transformations which cannot easily be performed by other methods. The potential and limitations of ICP–IDMS are demonstrated by recently published results and by some unpublished investigations by our group. It has been shown that possible loss of silicon as volatile SiF4 during decomposition of a sample by use of hydrofluoric acid has no effect on trace silicon determination if the isotope-dilution step occurs during digestion in a closed system. For powder samples, laser ablation ICP–IDMS can be applied with an accuracy comparable with that only available from matrix-matched standardization, whereas the accuracy of electrothermal vaporization ICP–IDMS was strongly dependent on the element determined. The significance of easy synthesis of isotope-labeled spike compounds for species-specific ICP–IDMS is demonstrated for monomethylmercury and Cr(VI). Isotope-exchange reactions between different element species can prevent the successful application of ICP–IDMS, as is shown for iodinated hydrocarbons. It is also shown for monomethylmercury that species transformations during sample-pretreatment steps can be followed by species-specific ICP–IDMS without loss of accuracy. A relatively simple and time-efficient procedure for determination of monomethylmercury in environmental and biological samples is discussed. The method, which entails a rapid microwave-assisted isotope dilution step and in-situ extraction of the derivatized species, has good potential for routine application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Heumann KG (1988) Isotope dilution mass spectrometry. In: Adams F, Gijbels R, van Grieken R (eds) Inorganic mass spectrometry. Wiley, New York, p 301

  2. Heumann KG (1990) Element species analyses with isotope dilution mass spectrometry. In: Broekaert JAC, Gücer S, Adams F (eds) Metal speciation in the environment. Springer, Berlin Heidelberg New York, p 153

  3. Lu PL, Huang KS, Jiang SJ (1993) Anal Chim Acta 284:181

    Article  CAS  Google Scholar 

  4. Enzweiler J, Potts PJ, Jarvis KE (1995) Analyst 120:1391

    CAS  Google Scholar 

  5. Brown AA, Ebdon L, Hill SJ (1994) Anal Chim Acta 286:391

    CAS  Google Scholar 

  6. Heumann KG, Rottmann L, Vogl J (1994) J Anal At Spectrom 9:1351

    CAS  Google Scholar 

  7. Ganser B, Wantschik M, Koch L (1983) Int J Mass Spectrom Ion Phys 48:405

    Article  Google Scholar 

  8. Loss RD, Rosman KJR, de Laeter JR (1983) Geostand Newslett 7:321

    CAS  Google Scholar 

  9. Vogl J, Liesegang D, Ostermann M, Diemer J, Berglund M, Quetel CR, Taylor PDP, Heumann KG (2000) Accred Qual Assur 5:314

    CAS  Google Scholar 

  10. Diemer J, Quetel CR, Taylor PDP (2002) Anal Bioanal Chem 374:220

    Article  CAS  PubMed  Google Scholar 

  11. Adams F, Adriaens A, Bogaerts A (2002) Anal Chim Acta 456:63

    Article  CAS  Google Scholar 

  12. Perna L, Bocci F, de las Heras LA, De Pablo J, Betti M (2002) J Anal At Spectrom 17:1166

    Article  CAS  Google Scholar 

  13. Diemer J, Heumann KG (2000) Fresenius J Anal Chem 368:103

    Article  CAS  PubMed  Google Scholar 

  14. Smith DH (2000) Isotope dilution mass spectrometry. In: Barshick CM, Duckworth DC, Smith DH (eds) Inorganic mass spectrometry. Marcel Dekker, New York, p 223

  15. Sargent M, Harte R, Harrington C (2002) (eds) Guidelines for achieving high accuracy in isotope dilution mass spectrometry. Royal Society of Chemistry, Cambridge

  16. Krystek P, Heumann KG (1999) J Anal At Spectrom 14:1443

    Article  CAS  Google Scholar 

  17. Müller M, Heumann KG (2000) Fresenius J Anal Chem 368:109

    PubMed  Google Scholar 

  18. Klemens P (2002) PhD Thesis, Johannes Gutenberg-University Mainz, Germany

  19. Wiedemann B, Institute of Nuclear Physics, Wolfgang-Goethe-University, Frankfurt/Main, Germany, personal communication

  20. Rottmann L, Heumann KG (1994) Fresenius J Anal Chem 350:221

    CAS  Google Scholar 

  21. CertiPUR spike solutions from Merck KGaA, Darmstadt, Germany. Certified Reference Materials by BAM and IRMM

  22. Dahmen J, Pfluger M, Martin M, Rottmann L, Weichbrodt G (1997) Fresenius J Anal Chem 359:410

    Article  CAS  Google Scholar 

  23. Venzago C, Degussa Industriepark Wolfgang GmbH, Hanau, Germany, personal communication

  24. Jochum KP, Jenner G (1994) Fresenius J Anal Chem 350:310

    CAS  Google Scholar 

  25. Diemer J (1999) PhD Thesis, Johannes Gutenberg-University Mainz, Germany

  26. Gelaude I, Dams R, Resano M, Vanhaecke F, Moens L (2002) Anal Chem 74:3833

    Article  CAS  PubMed  Google Scholar 

  27. Tibi M, Heumann KG (2003) Anal Bioanal Chem 377:126

    CAS  PubMed  Google Scholar 

  28. Tibi M, Heumann KG (2003) J Anal At Spectrom 18:1076

    Article  Google Scholar 

  29. Kanicky V, Otruba V, Mermet JM (2001) Fresenius J Anal Chem 371:934

    Article  PubMed  Google Scholar 

  30. Koch J, Feldmann B, Hattendorf D, Günther D, Engel U, Jakubowski N, Bolshov M, Niemax K, Hergenröder R (2002) Spectrochim Acta B57:1057

    Google Scholar 

  31. Rodushkin I, Axelsson MD, Malinovsky D, Baxter DC (2002) J Anal At Spectrom 17:1231

    Article  CAS  Google Scholar 

  32. Boulyga SF, Tibi M, Heumann KG (2003) Johannes Gutenberg-University Mainz, Germany, unpublished work

  33. Tibi M (2003) PhD Thesis, Johannes Gutenberg-University, Mainz, Germany, p 100

  34. Heumann KG (2002) Anal Bioanal Chem 373:323

    Article  CAS  PubMed  Google Scholar 

  35. Berg T (2003) Speciation and legislation. In: Cornelis R, Caruso J, Crews H, Heumann KG (eds) Handbook of element speciation—techniques and methodology. Wiley, Chichester, UK, p 629

  36. Kingston HM (1995) US Patent 5 414 259

  37. European virtual institute for speciation analysis (EVISA) http://www.speciation.info

  38. Cornelis R, Caruso J, Crews H, Heumann KG (2003) (eds) Handbook of element speciation—techniques and methodology. Wiley, Chichester, UK

  39. Hintelmann H, Falter R, Ilgen G, Evans RD (1997) Fresenius J Anal Chem 358:363

    CAS  Google Scholar 

  40. Snell JP, Stewart II, Sturgeon RE, Frech W (2000) J Anal At Spectrom 15:1540

    Article  CAS  Google Scholar 

  41. Schaumlöffel D, Prange A, Marx G, Heumann KG, Brätter P (2002) Anal Bioanal Chem 372:155

    PubMed  Google Scholar 

  42. Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) Spectrochim Acta B53:273

    Google Scholar 

  43. Demuth N, Heumann KG (2001) Anal Chem 73:4020

    CAS  PubMed  Google Scholar 

  44. Clough R, Truscatt J, Belt ST, Evans EH, Fairman B, Catterick T (2003) Appl Spectrosc Rev 38:101

    Article  Google Scholar 

  45. Garcia Alonso J, Ruiz Encinar J, Rodriguez Gonzalez P, Sanz-Medel A (2002) Anal Bioanal Chem 373:432

    PubMed  Google Scholar 

  46. Nusko R, Heumann KG (1994) Anal Chim Acta 286:283

    CAS  Google Scholar 

  47. Rodriguez Martin-Doimeadios RC, Stoichev T, Krupp E, Amouroux D, Holeman M, Donard OFX (2002) Appl Organomet Chem 16:610

    Article  Google Scholar 

  48. Schwarz A (2003) PhD Thesis, Johannes Gutenberg-University, Mainz, Germany

  49. Marx G (2000) PhD Thesis, Johannes Gutenberg-University, Mainz, Germany

  50. Heumann KG (2003) Calibration in element speciation analysis. In: Cornelis R, Caruso J, Crews H, Heumann KG (eds) Handbook of element speciation—techniques and methodology. Wiley, Chichester, UK, p 547

  51. Quevauviller P (2000) J Environ Monit 2:292

    Article  CAS  PubMed  Google Scholar 

  52. Demuth N (2001) PhD Thesis, Johannes Gutenberg-University, Mainz, Germany

  53. Rodriguez Martin-Doimeadios RC, Krupp E, Amouroux D, Donard OFX (2002) Anal Chem 74:2505

    Article  Google Scholar 

  54. Logar M, Horvat M, Falnoga I, Stibilj V (2000) Fresenius J Anal Chem 366:453

    Article  CAS  PubMed  Google Scholar 

  55. Huo D, Kingston HM (2000) Anal Chem 72:5047

    Article  CAS  PubMed  Google Scholar 

  56. Ruiz Encinar J, Rodriguez Gonzalez P, Garcia Alonso JI, Sanz-Medel A (2002) Anal Chem 74:270

    PubMed  Google Scholar 

Download references

Acknowledgement

The author wishes to thank the following PhD students and postdoctoral members of his group who contributed unpublished results to this review: S.F. Boulyga, N. Demuth, J. Diemer, P. Klemens, A. Schwarz, and M. Tibi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus G. Heumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heumann, K.G. Isotope-dilution ICP–MS for trace element determination and speciation: from a reference method to a routine method?. Anal Bioanal Chem 378, 318–329 (2004). https://doi.org/10.1007/s00216-003-2325-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2325-z

Keywords

Navigation