Skip to main content
Log in

Cure characteristics, compression set, swelling behaviors, abrasion resistance and mechanical properties of nanoclay (Cloisite 15A, Cloisite 20A and Cloisite 30B) filler filled EPDM/NBR blend system

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the influence of the organoclay (OC) nano-fillers (Cloisite 15A (CE15A), Cloisite 20A (CE20A), and Cloisite 30B (CE30B)) on the cure and swelling behaviors, compression set, abrasion resistance, and mechanical properties of a blend of 50/50 ethylene-propylene-diene monomer and acrylonitrile-butadiene rubber (EPDM/NBR) has been examined. It has been noted that the maximum torque values increase as filler loading increases. Comparing filled nanocomposites to unfilled samples, it has been observed that filled systems have a lower tendency to absorb solvent. Due to improved filler reinforcement, nanocomposites reinforced with CE30B showed the least solvent uptake across OC filled systems. The morphology of the CE30B-filled samples was more homogeneous when compared to the other (CE15A and CE20A) filler-reinforced nanocomposites. The mechanical properties of the CE30B-filled samples, followed by those of the CE20A and CE15A-filled systems, improved the most. This has been explained by CE30B OC's increased interaction between nanofiller and rubber matrix. Mechanical testing experimental results have been contrasted with various theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Senthilvel K, Vishvanathperumal S, Prabu B, John Baruch L (2016) Studies on the morphology, cure characteristics and mechanical properties of acrylonitrile butadiene rubber with hybrid filler (carbon black/silica) composite. Polym Polym Compos 24(7):473–480

    Article  CAS  Google Scholar 

  2. Vishvanathperumal S, Gopalakannan S (2016) Reinforcement of ethylene vinyl acetate with carbon black/silica hybrid filler composites. In Applied Mechanics and Materials (Vol. 852, pp. 16–22). Trans Tech Publications Ltd

  3. Anand G, Vishvanathperumal S (2022) Properties of SBR/NR Blend: The Effects of Carbon Black/Silica (CB/SiO2) Hybrid Filler and Silane Coupling Agent. SILICON 14:9051–9060

    Article  CAS  Google Scholar 

  4. Vishvanathperumal S, Anand G (2020) Effect of nanoclay/nanosilica on the mechanical properties, abrasion and swelling resistance of EPDM/SBR composites. SILICON 12(8):1925–1941

    Article  CAS  Google Scholar 

  5. Vishvanathperumal S, Navaneethakrishnan V, Gopalakannan S (2018) The effect of Nanoclay and hybrid filler on curing characteristics, mechanical properties and swelling resistance of ethylene-vinyl acetate/styrene butadiene rubber blend composite. J Adv Microsc Res 13(4):469–476

    Article  Google Scholar 

  6. Vishvanathperumal S, Anand G (2021) Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. SILICON 13(10):3473–3497

    Article  CAS  Google Scholar 

  7. Vishvanathperumal S, Anand G (2022) Effect of nanosilica on the mechanical properties, compression set, morphology, abrasion and swelling resistance of sulphur cured EPDM/SBR composites. SILICON 14(7):3523–3534

    Article  CAS  Google Scholar 

  8. Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687

    Article  CAS  Google Scholar 

  9. Park SJ, Kim JS (2000) Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system. J Colloid Interface Sci 232(2):311–316

    Article  CAS  PubMed  Google Scholar 

  10. Vishvanathperumal S, Gopalakannan S (2019) Effects of the nanoclay and crosslinking systems on the mechanical properties of ethylene-propylene-diene monomer/styrene butadiene rubber blends nanocomposite. SILICON 11(1):117–135

    Article  CAS  Google Scholar 

  11. Vishvanathperumal S, Gopalakannan S (2017) Swelling properties, compression set behavior and abrasion resistance of ethylene-propylene-diene rubber/styrene butadiene rubber blend nanocomposites. Polymer Korea 41(3):433–442

    Article  CAS  Google Scholar 

  12. Vishvanathperumal S, Navaneethakrishnan V, Anand G, Gopalakannan S (2020) Evaluation of crosslink density using material constants of ethylene-propylene-Diene monomer/styrene-butadiene rubber with different Nanoclay loading: finite element analysis-simulation and experimental. Advanced Science, Engineering and Medicine 12(5):632–642

    Article  CAS  Google Scholar 

  13. Balachandran M, Bhagawan SS (2012) Mechanical, thermal and transport properties of nitrile rubber (NBR)—nanoclay composites. J Polym Res 19(2):1–10

    Article  CAS  Google Scholar 

  14. Liu L, Qi Z, Zhu X (1999) Studies on nylon 6/clay nanocomposites by melt-intercalation process. J Appl Polym Sci 71(7):1133–1138

    Article  CAS  Google Scholar 

  15. Lan T, Kaviratna PD, Pinnavaia TJ (1994) On the nature of polyimide-clay hybrid composites. Chem Mater 6(5):573–575

    Article  CAS  Google Scholar 

  16. Gilman W, Morgan A, Giannelis P, Wuthenow M, Manias E (1999) Flame Retardancy 10th Annual BBC Conference Proceedings

  17. Li JX, Wu J, Chan CM (2000) Thermoplastic nanocomposites. Polymer 41(18):6935–6937

    Article  CAS  Google Scholar 

  18. Wang S, Hu Y, Wang Z, Yong T, Chen Z, Fan W (2003) Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites. Polym Degrad Stab 80(1):157–161

    Article  CAS  Google Scholar 

  19. Giannelis EP (1996) Polymer layered silicate nanocomposites Advanced materials 8(1):29–35

    CAS  Google Scholar 

  20. Okamoto M (2006) Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology. Mater Sci Technol 22(7):756–779

    Article  CAS  Google Scholar 

  21. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  CAS  Google Scholar 

  22. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Article  Google Scholar 

  23. Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40(6):807–816

    Article  CAS  Google Scholar 

  24. Mahapatra SP, Sridhar V, Chaudhary RNP, Tripathy DK (2007) Relaxation behavior of conductive carbon black reinforced EPDM microcellular vulcanizates. Polym Eng Sci 47(7):984–995

    Article  CAS  Google Scholar 

  25. Kueseng P, Sae-oui P, Rattanasom N (2013) Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: effect of preparation methods. Polym Testing 32(4):731–738

    Article  CAS  Google Scholar 

  26. Chow WS, Bakar AA, Ishak ZM, Karger-Kocsis J, Ishiaku US (2005) Effect of maleic anhydride-grafted ethylene–propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites. Eur Polymer J 41(4):687–696

    Article  CAS  Google Scholar 

  27. Bonilla-Cruz J, Hernández-Mireles B, Mendoza-Carrizales R, Ramírez-Leal LA, Torres-Lubián R, RamosdeValle LF, Paul DR, Saldívar-Guerra E (2017) Chemical modification of butyl rubber with maleic anhydride via nitroxide chemistry and its application in polymer blends. Polymers 9(2):63

    Article  PubMed  PubMed Central  Google Scholar 

  28. Azizli MJ, Mokhtary M, Khonakdar HA, Goodarzi V (2020) Hybrid rubber nanocomposites based on XNBR/EPDM: select the best dispersion type from different nanofillers in the presence of a compatibilizer. J Inorg Organomet Polym Mater 30:2533–2550

    Article  CAS  Google Scholar 

  29. Ganeche PS, Balasubramanian P, Vishvanathperumal S (2022) Halloysite nanotubes (HNTs)-filled ethylene-propylene-diene monomer/styrene-butadiene rubber (EPDM/SBR) composites: mechanical, swelling, and morphological properties. SILICON 14(12):6611–6620

    Article  CAS  Google Scholar 

  30. Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ (2003) Constitutive modeling of nanotube–reinforced polymer composites. Compos Sci Technol 63(11):1671–1687

    Article  CAS  Google Scholar 

  31. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45(2):487–506

    Article  CAS  Google Scholar 

  32. Smith GD, Bedrov D, Li L, Byutner O (2002) A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J Chem Phys 117(20):9478–9489

    Article  CAS  Google Scholar 

  33. Brown D, Mele P, Marceau S, Albérola ND (2003) A molecular dynamics study of a model nanoparticle embedded in a polymer matrix. Macromolecules 36(4):1395–1406

    Article  CAS  Google Scholar 

  34. Zhu L, Narh KA (2004) Numerical simulation of the tensile modulus of nanoclay-filled polymer composites. J Polym Sci, Part B: Polym Phys 42(12):2391–2406

    Article  CAS  Google Scholar 

  35. Sundar R, Mohan SK, Vishvanathperumal S (2022) Effect of Surface Modified Halloysite Nanotubes (mHNTs) on the Mechanical Properties and Swelling Resistance of EPDM/NBR Nanocomposites. Polymer Korea 46(6):728–743

    Article  CAS  Google Scholar 

  36. Guth E (1945) Theory of filler reinforcement. Rubber Chem Technol 18(3):596–604

    Article  CAS  Google Scholar 

  37. Affdl JH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  38. Halpin JC (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3(4):732–734

    Article  Google Scholar 

  39. Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41(11):4626–4627

    Article  Google Scholar 

  40. Lewis TB, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14(6):1449–1471

    Article  CAS  Google Scholar 

  41. Manoj KC, Kumari P, Rajesh C, Unnikrishnan G (2010) Aromatic liquid transport through filled EPDM/NBR blends. J Polym Res 17:1–9

    Article  CAS  Google Scholar 

  42. Thomas PC, Tomlal Jose E, Selvin Thomas P, Thomas S, Joseph K (2010) High-performance nanocomposites based on arcylonitrile-butadiene rubber with fillers of different particle size: Mechanical and morphological studies. Polym Compos 31(9):1515–1524

    Article  CAS  Google Scholar 

  43. Flory PJ, Rehner J Jr (1943) Statistical mechanics of cross-linked polymer networks II. Swelling The Journal of Chemical Physics 11(11):521–526

    Article  CAS  Google Scholar 

  44. Noriman NZ, Ismail H (2012) Properties of styrene butadiene rubber (SBR)/recycled acrylonitrile butadiene rubber (NBRr) blends: The effects of carbon black/silica (CB/Sil) hybrid filler and silane coupling agent, Si69. J Appl Polym Sci 124(1):19–27

    Article  CAS  Google Scholar 

  45. Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25:4933–4942

    Article  CAS  Google Scholar 

  46. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53(3–4):73–197

    Article  Google Scholar 

  47. Einstein A (1956) Investigations on the Theory of the Brownian Movement. Courier Corporation

  48. Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6(2):162–170

    Article  CAS  Google Scholar 

  49. Brodnyan JG (1959) The concentration dependence of the Newtonian viscosity of prolate ellipsoids. Transactions of the Society of Rheology 3(1):61–68

    Article  CAS  Google Scholar 

  50. Broutman LJ, Krock RH (1967) Modern composite materials. Addison Wesley; Reading, Mass

  51. Hirsch TJ (1962) March. Modulus of elasticity iof concrete affected by elastic moduli of cement paste matrix and aggregate. J Proc 59(3):427–452

  52. Paul B (1960) Prediction of the elastic contents of multiphase materials. Transactions of the American Institute of Mining and Metallurgical Engineers 218:36–41

    CAS  Google Scholar 

  53. Counto UJ (1964) The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete. Mag Concr Res 16(48):129–138

    Article  Google Scholar 

  54. Hansen TC (1965) Influence of aggregate and voids on modulus of elasticity of concrete, cement mortar, and cement paste. J Proc 62(2):193–216

  55. Kaplan MF (1959) Ultrasonic Pulse Velocity, Dynamic Modulus of Elasticity, Poisson's Ratio and the Strength of Concrete Made with Thirteen Different Cements' Aggregate. Rilem Synpo. Paris

  56. Guth E (1938) On the hydrodynamical theory of the viscosity of suspensions. Phys Rev 53:322–325

    CAS  Google Scholar 

  57. Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63(11):1647–1654

    Article  CAS  Google Scholar 

  58. Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45(15):6045–6055

    Article  CAS  Google Scholar 

  59. Somoza AM, Tarazona P (1989) Density functional approximation for hard-body liquid crystals. J Chem Phys 91:517–527

    Article  CAS  Google Scholar 

  60. Govindan K, Ramabalan S, Vishvanathperumal S, Chockalingam S (2023) Influence of halloysite nanotubes on mechanical and swelling properties of silicone rubber compound. J Polym Res 30(8):1–17

    Article  Google Scholar 

  61. Prakash PC, Gurumoorthi G, Navaneethakrishnan V, Vishvanathperumal S (2023) Effect of Nanographene Oxide on the Mechanical Properties of EPDM/SBR Nano-composites. Polymer Korea 47(4):427–439

    Article  CAS  Google Scholar 

  62. Frankland SJV, Caglar A, Brenner DW, Griebel M (2002) Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube− polymer interfaces. J Phys Chem B 106(12):3046–3048

    Article  CAS  Google Scholar 

  63. Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS (2003) The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos Sci Technol 63(11):1655–1661

    Article  CAS  Google Scholar 

  64. Bradshaw RD, Fisher FT, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor. Compos Sci Technol 63(11):1705–1722

    Article  CAS  Google Scholar 

  65. Fisher FT, Bradshaw RD, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites—I: Modulus predictions using effective nanotube properties. Compos Sci Technol 63(11):1689–1703

    Article  CAS  Google Scholar 

  66. Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17):4993–5013

  67. Jeon HS, Rameshwaram JK, Kim G (2004) Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J Polym Sci, Part B: Polym Phys 42(6):1000–1009

    Article  CAS  Google Scholar 

  68. Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42:9929–9940

    Article  CAS  Google Scholar 

  69. Dhanasekar S, Baskar S, Vishvanathperumal S (2023) Halloysite Nanotubes Effect on Cure and Mechanical Properties of EPDM/NBR Nanocomposites. J Inorg Organomet Polym Mater, pp. 1–13

  70. Tang CY, Chen DZ, Yue TM, Chan KC, Tsui CP, Peter HF (2008) Water absorption and solubility of PHBHV/HA nanocomposites. Compos Sci Technol 68(7–8):1927–1934

    Article  CAS  Google Scholar 

  71. Sujith A, Unnikrishnan G (2005) Barrier properties of natural rubber/ethylene vinyl acetate/carbon black composites. J Mater Sci 40:4625–4640

    Article  CAS  Google Scholar 

  72. Oberth AE (1967) Principle of strength reinforcement in filled rubbers. Rubber Chem Technol 40(5):1337–1363

    Article  CAS  Google Scholar 

  73. Mohapatra AK, Mohanty S, Nayak SK (2011) Modeling of the mechanical properties of polylactic acid/clay nanocomposites using composite theories. Int J Plast Technol 15(2):174–187

    Article  CAS  Google Scholar 

  74. Shimpi NG, Mishra S (2010) Synthesis of nanoparticles and its effect on properties of elastomeric nanocomposites. J Nanopart Res 12:2093–2099

    Article  CAS  Google Scholar 

  75. Wu YP, Jia QX, Yu DS, Zhang LQ (2004) Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polym Testing 23(8):903–909

    Article  CAS  Google Scholar 

  76. Ravi Theja MS, Kilari N, Vishvanathperumal S, Navaneethakrishnan V (2021) Modeling tensile modulus of nanoclay-filled ethylene–propylene–diene monomer/styrene–butadiene rubber using composite theories. Journal of Rubber Research 24(5):847–856

    Article  CAS  Google Scholar 

  77. Ragupathy K, Prabaharan G, Pragadish N, Vishvanathperumal S (2023) Effect of silica nanoparticles and modified silica nanoparticles on the mechanical and swelling properties of EPDM/SBR blend nanocomposites. Silicon, pp. 1–14

  78. Aravinth V, Gurumoorthi G, Vishvanathperumal S, Navaneethakrishnan V (2023) Effect of Modified Nanographene Oxide on the Mechanical and Swelling Properties of Silicone Rubber Nanocomposites. Polymer Korea 47(3):288–302

    Article  CAS  Google Scholar 

  79. Das RK, Ragupathy K, Kumar TS, Vishvanathperumal S (2023) Effect of Halloysite Nanotubes (HNTs) on Mechanical Properties of EPDM/NBR Blend-Nanocomposites. Polymer Korea 47(2):221–232

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds were received during this research work.

Author information

Authors and Affiliations

Authors

Contributions

S Dhanasekar: Conceptualization, Methodology, Validation, Investigation, Formal analysis, Resources, Writing—original draft. S Baskar: Conceptualization, Supervision, Validation, Writing—review & editing. G Anand: Writing – revision & editing. S Vishvanathperumal: Validation, Writing—review & editing.

Corresponding author

Correspondence to S. Baskar.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasekar, S., Baskar, S. & Vishvanathperumal, S. Cure characteristics, compression set, swelling behaviors, abrasion resistance and mechanical properties of nanoclay (Cloisite 15A, Cloisite 20A and Cloisite 30B) filler filled EPDM/NBR blend system. J Polym Res 30, 375 (2023). https://doi.org/10.1007/s10965-023-03759-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03759-7

Keywords

Navigation