Skip to main content

Advertisement

Log in

Fabrication of poly(lactic acid)-cellulose acetate core-shell electrospun fibers with improved tensile strength and biocompatibility for bone tissue engineering

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The employment of individual poly(lactic acid) (PLA) or cellulose acetate (CA) electrospun fibers as bone tissue replacement was restricted by the weak mechanical properties of CA and the poor cell-affinity of PLA. In this study, core-shell fibers with PLA as the core component and CA as the shell layer were fabricated via coaxial electrospinning with significant improvements in the tensile strength and biocompatibility in comparison to individual PLA and CA fibers and blend PLA/CA fibers. The employment of a core-to-shell flow rate ratio of 0.25:0.5 mL/hr:mL/hr resulted in the formation of defect-free and uniformly distributed PLA-CA core-shell fibers (cs-PLA1-CA2) with the highest ultimate tensile strength (19.53 ± 1.68 MPa) and Young’s modulus (0.62 ± 0.09 GPa) among all core-shell fibers produced in this study. These tensile values match the tensile properties of native cancellous bone and represent around a 130% and 160% improvement in strength and stiffness compared to monolithic CA fibers, respectively. Higher weight fraction and improved crystallinity of PLA-core were revealed to contribute to this mechanical enhancement of cs-PLA1-CA2. An in vitro biocompatibility study was conducted using human fetal osteoblasts (hFOB). The results indicate improved cell distribution, better cell-scaffold attachment, and higher cell proliferation and alkaline phosphatase (ALP) activity of cs-PLA1-CA2 compared to monolithic PLA and blend PLA/CA fibers, while matching the growth performance of hFOB seeded on tissue culture polystyrene (TCP). The PLA-CA core-shell fibers produced in this study hold great promise for use as bone tissue scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw data of this study are available from the corresponding authors upon reasonable request.

References

  1. Guo BL, Ma PX (2018) Conducting Polym Tissue Eng Biomacromolecules 19:1764–1782

    CAS  Google Scholar 

  2. Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188

    Google Scholar 

  3. Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT (2016) Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliver Rev 107:247–276

    CAS  Google Scholar 

  4. Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F (2019) Core-shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers 11:2008

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sperling LE, Reis KP, Pranke P, Wendorff JH (2016) Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery. Drug Discov Today 21:1243–1256

    CAS  PubMed  Google Scholar 

  6. Atila D, Hasirci V, Tezcaner A (2022) Coaxial electrospinning of composite mats comprised of core/shell poly(methyl methacrylate)/silk fibroin fibers for tissue engineering applications. J Mech Behav Biomed Mater 128:105105

    CAS  PubMed  Google Scholar 

  7. Merkle VM, Tran PL, Hutchinson M, Ammann KR, DeCook K, Wu X, Slepian MJ (2015) Core–shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration. Acta Biomater 27:77–87

    CAS  PubMed  Google Scholar 

  8. Gregor A, Filova E, Novak M, Kronek J, Chlup H, Buzgo M, Blahnova V, Lukasova V, Bartos M, Necas A, Hosek J (2017) Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng 11:31

    PubMed  PubMed Central  Google Scholar 

  9. Alharbi HF, Luqman M, Khalil KA, Elnakady YA, Abd-Elkader OH, Rady AM, Alharthi NH, Karim MR (2018) Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering. Eur Polym J 98:483–491

    CAS  Google Scholar 

  10. Schroepfer M, Junghans F, Voigt D, Meyer M, Breier A, Schulze-Tanzil G, Prade I (2020) Gas-phase fluorination on PLA improves cell adhesion and spreading. ACS Omega 5:5498–5507

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai ZJ, Yi X, Yang HZ, Jia JR, Liu YP (2016) Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility. Mater Sci Eng C-Mater Biol Appl 58:757–767

    CAS  Google Scholar 

  12. Golizadeh M, Karimi A, Gandomi-Ravandi S, Vossoughi M, Khafaji M, Joghataei MT, Faghihi F (2019) Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers. Carbohydr Polym 207:796–805

    CAS  PubMed  Google Scholar 

  13. Quan ZZ, Wang YH, Wu JJ, Qin XH, Yu JY (2021) Preparation and characterization of electrospun cellulose acetate sub-micro fibrous membranes. Text Res J 91:2540–2550

    CAS  Google Scholar 

  14. Samadian H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H, Goodarzi A, Ghorbani S (2018) In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cell Nanomed Biotechnol 46:S964–S974

    Google Scholar 

  15. Cheng HN, Dowd MK, Selling GW, Biswas A (2010) Synthesis of cellulose acetate from cotton by products. Carbohydr Polym 80:449–452

    CAS  Google Scholar 

  16. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B, Dorkoosh FA, Haghpanah V, Khorramizadeh MR (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr Polym 198:131–141

    CAS  PubMed  Google Scholar 

  17. Atila D, Keskin D, Tezcaner A (2016) Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Mater Sci Eng C-Mater Biol Appl 69:1103–1115

    CAS  PubMed  Google Scholar 

  18. Ertas Y, Uyar T (2017) Fabrication of cellulose acetate/polybenzoxazine cross-linked electrospun nanofibrous membrane for water treatment. Carbohydr Polym 177:378–387

    CAS  PubMed  Google Scholar 

  19. Teixeira MA, Antunes JC, Seabra CL, Tohidi SD, Reis S, Amorim MTP, Felgueiras HP (2022) Tiger 17 and pexiganan as antimicrobial and hemostatic boosters of cellulose acetate-containing poly(vinyl alcohol) electrospun mats for potential wound care purposes. Int J Biol Macromol 209:1526–1541

    CAS  PubMed  Google Scholar 

  20. Sinha R, Janaswamy S, Prasad A (2020) Enhancing mechanical properties of Electrospun cellulose acetate Fiber mat upon Potassium Chloride exposure. Materialia 14:100881

    CAS  Google Scholar 

  21. Lee J, Moon JY, Lee JC, Hwang TI, Park CH, Kim CS (2021) Simple conversion of 3D electrospun nanofibrous cellulose acetate into a mechanically robust nanocomposite cellulose/calcium scaffold. Carbohydr Polym 253:117191

    CAS  PubMed  Google Scholar 

  22. Liguori A, Bigi A, Colombo V, Focarete ML, Gherardi M, Gualandi C, Oleari MC, Panzavolta S (2016) Atmospheric pressure Non-Equilibrium plasma as a Green Tool to Crosslink gelatin nanofibers. Sci Rep 6:38542

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma B, Wang X, Wu C, Chang J (2014) Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater 1:81–89

    PubMed  PubMed Central  Google Scholar 

  24. Song KL, Xu HL, Mu BN, Xie KL, Yang YQ (2017) Non-toxic and clean crosslinking system for protein materials: Effect of extenders on crosslinking performance. J Clean Prod 150:214–223

    CAS  Google Scholar 

  25. Stone SA, Gosavi P, Athauda TJ, Ozer RR (2013) In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers. Mater Lett 112:32–35

    CAS  Google Scholar 

  26. Chang A, Ye Z, Ye Z, Deng J, Lin J, Wu C, Zhu H (2022) Citric acid crosslinked sphingan WL gum hydrogel films supported ciprofloxacin for potential wound dressing application. Carbohydr Polym 291:119520

    CAS  PubMed  Google Scholar 

  27. Zhao W, Cao S, Cai H, Wu Y, Pan Q, Lin H, Fang J, He Y, Deng H, Liu Z (2022) Chitosan/silk fibroin biomimic scaffolds reinforced by cellulose acetate nanofibers for smooth muscle tissue engineering. Carbohydr Polym 298:120056

    CAS  PubMed  Google Scholar 

  28. Elsayed RE, Madkour TM, Azzam RA (2020) Tailored-design of electrospun nanofiber cellulose acetate/poly(lactic acid) dressing mats loaded with a newly synthesized sulfonamide analog exhibiting superior wound healing. Int J Biol Macromol 164:1984–1999

    CAS  PubMed  Google Scholar 

  29. Gomaa SF, Madkour TM, Moghannem S, El-Sherbiny IM (2017) New polylactic acid/ cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int J Biol Macromol 105:1148–1160

    CAS  PubMed  Google Scholar 

  30. Chen J, Zhang T, Hua W, Li P, Wang X (2020) 3D porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization. Colloid Surf A-Physicochem Eng Asp 585:124048

    CAS  Google Scholar 

  31. Naseri-Nosar M, Salehi M, Hojjati-Emami S (2017) Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int J Biol Macromol 103:701–708

    CAS  PubMed  Google Scholar 

  32. Abdullah MF, Andriyana A, Muhamad F, Ang BC (2021) Effect of core-to-shell flowrate ratio on morphology, crystallinity, mechanical properties and wettability of poly(lactic acid) fibers prepared via modified coaxial electrospinning. Polymer 237:124378

    CAS  Google Scholar 

  33. Joy N, Samavedi S (2020) Identifying specific combinations of matrix properties that promote controlled and sustained release of a hydrophobic drug from electrospun meshes. ACS Omega 5:15865–15876

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Davachi SM, Kaffashi B (2015) Preparation and characterization of poly L-Lactide/Triclosan nanoparticles for specific antibacterial and medical applications. Int J Polym Mater Polym Biomat 64:497–508

    CAS  Google Scholar 

  35. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere 251:980–990

    CAS  Google Scholar 

  36. Jia SK, Yu DM, Zhu Y, Wang Z, Chen LG, Fu L (2017) Morphology, crystallization and thermal behaviors of PLA-based composites: wonderful effects of hybrid GO/PEG via dynamic impregnating. Polymers 9:528

    PubMed  PubMed Central  Google Scholar 

  37. Hassan M, Berglund L, Abou-Zeid R, Hassan E, Abou-Elseoud W, Oksman K (2019) Nanocomposite Film based on cellulose acetate and Lignin-Rich Rice Straw Nanofibers. Materials 12:595

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cerqueira DA, Rodrigues Filho G, Assunção RMN (2006) A New Value for the heat of Fusion of a perfect crystal of cellulose acetate. Polym Bull 56:475–484

    CAS  Google Scholar 

  39. Celebioglu A, Uyar T (2011) Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett 65:2291–2294

    CAS  Google Scholar 

  40. Han SO, Son WK, Youk JH, Lee TS, Park WH (2005) Ultrafine porous fibers electrospun from cellulose triacetate. Mater Lett 59:2998–3001

    CAS  Google Scholar 

  41. Khalf A, Singarapu K, Madihally SV (2015) Cellulose acetate core-shell structured electrospun fiber: fabrication and characterization. Cellulose 22:1389–1400

    CAS  Google Scholar 

  42. Jalvo B, Mathew AP, Rosal R (2017) Coaxial poly(lactic acid) electrospun composite membranes incorporating cellulose and chitin nanocrystals. J Membr Sci 544:261–271

    CAS  Google Scholar 

  43. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    CAS  Google Scholar 

  44. Zhang Y, Zhang M, Cheng D, Xu S, Du C, Xie L, Zhao W (2022) Applications of electrospun scaffolds with enlarged pores in tissue engineering. Biomater Sci 10:1423–1447

    CAS  PubMed  Google Scholar 

  45. Wang DK, Varanasi S, Fredericks PM, Hill DJT, Symons AL, Whittaker AK, Rasoul F (2013) FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. J Polym Sci Pol Chem 51:5163–5176

    CAS  Google Scholar 

  46. You ZR, Hu MH, Tuan-Mu HY, Hu JJ (2016) Fabrication of poly(glycerol sebacate) fibrous membranes by coaxial electrospinning: influence of shell and core solutions. J Mech Behav Biomed Mater 63:220–231

    CAS  PubMed  Google Scholar 

  47. Fei PF, Liao L, Cheng BW, Song J (2017) Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal Methods 9:6194–6201

    CAS  Google Scholar 

  48. Kendouli S, Khalfallah O, Sobti N, Bensouissi A, Avci A, Eskizeybek V, Achour S (2014) Modification of cellulose acetate nanofibers with PVP/Ag addition. Mater Sci Semicond Process 28:13–19

    CAS  Google Scholar 

  49. Pereira AGB, Fajardo AR, Gerola AP, Rodrigues JHS, Nakamura CV, Muniz EC, Hsieh YL (2020) First report of electrospun cellulose acetate nanofibers mats with chitin and chitosan nanowhiskers: fabrication, characterization, and antibacterial activity. Carbohydr Polym 250:116954

    CAS  PubMed  Google Scholar 

  50. Liu Y, Wei HH, Wang Z, Li Q, Tian N (2018) Simultaneous enhancement of strength and toughness of PLA induced by miscibility variation with PVA. Polymers 10:1178

    PubMed  PubMed Central  Google Scholar 

  51. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PFM, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions — a 21st century perspective. Bone Res 1:216–248

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Conte AA, Sun KT, Hu X, Beachley VZ (2020) Effects of fiber density and strain rate on the mechanical properties of electrospun polycaprolactone nanofiber mats. Front Chem 8:610

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fukushima K, Tabuani D, Arena M, Gennari M, Camino G (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73:540–549

    CAS  Google Scholar 

  54. Kim JS, Lee DS (2000) Thermal properties of electrospun polyesters. Polym J 32:616–618

    CAS  Google Scholar 

  55. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412

    CAS  Google Scholar 

  56. Merkle V, Zeng L, Teng W, Slepian M, Wu X (2013) Gelatin shells strengthen polyvinyl alcohol core–shell nanofibers. Polymer 54:6003–6007

    CAS  Google Scholar 

  57. Ng K, Azari P, Nam HY, Xu F, Pingguan-Murphy B (2019) Electrospin-Coating of Paper: a natural extracellular matrix inspired design of Scaffold. Polymers 11:650

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakamura H (2007) Morphology, function, and differentiation of bone cells. J Hard Tissue Biol 16:15–22

    CAS  Google Scholar 

  59. Ghag AK, Gough JE, Downes S (2014) The osteoblast and osteoclast responses to phosphonic acid containing poly(ε-caprolactone) electrospun scaffolds. Biomater Sci 2:233–241

    CAS  PubMed  Google Scholar 

  60. Kuru L, Griffiths GS, Petrie A, Olsen I (1999) Alkaline phosphatase activity is up regulated in regenerating human periodontal cells. J Periodontal Res 34:123–127

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were grateful for the research funding for this work from the Fundamental Research Grant Scheme (FRGS), Ministry of Higher Education (MOHE), Malaysia (grant no. FP048-2019 A). M. F. Abdullah also acknowledges the financial support from MOHE, Malaysia and Universiti Malaysia Perlis through the “Skim Latihan Akademik Bumiputera (SLAB)” program. The authors would also like to thank Liyana Abu and Kelvin Ng for the technical support and valuable advice that they provided during cell culture experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andri Andriyana, Farina Muhamad or Bee Chin Ang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 820 KB)

Supplementary file2 (PNG 828 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M.F., Andriyana, A., Muhamad, F. et al. Fabrication of poly(lactic acid)-cellulose acetate core-shell electrospun fibers with improved tensile strength and biocompatibility for bone tissue engineering. J Polym Res 30, 257 (2023). https://doi.org/10.1007/s10965-023-03639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03639-0

Keywords

Navigation