Skip to main content
Log in

Synthesis of a poly(p-aminophenol)/starch/graphene oxide ternary nanocomposite for removal of methylene blue dye from aqueous solution

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the current study, poly(p-aminophenol) (PpAP), with starch and graphene oxide (GO), was successfully synthesised by oxidative polymerisation from p-aminophenol monomer in an aqueous alkaline medium using ammonium persulfate (APS) as an oxidising agent. The synthesised polymers were characterised using UV–Vis spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction (XRD), and Brunauer–Emmett–Teller and zeta potential techniques. These techniques confirmed the presence of site-selective interaction between the conjugated PpAP chain and π-bonded surface, and thus the H-bonding of starch and GO. Further, the enhanced dye removal efficiency was ascribed to the improved morphology and the pore volume created by the entangled PpAP/Starch/GO. The influences of experimental conditions, such as the polymer composite content, dye concentration, time, pH of the bath solution, and temperature on cationic dye adsorption, were investigated. The adsorption data were fixed to the Langmuir isotherm (R2 in the range between 0.997 and 0.9995) and showed a pseudo-second order (R2 = in the range of 0.996 to 0.9996) kinetic model. Moreover, the polymer ternary composite was able to remove a large proportion (96.7%) of the cationic dye from water at pH 7. The thermodynamic investigation found that the adsorption process was spontaneous and endothermic. In addition, the synthesised adsorbent showed good reusability at six cycles. The data acquired suggest that the PpAP/Starch/GO composite can be effectively applied and reused as an inexpensive adsorbent material for removal of MB dye from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kumar R, Sharma RK, Singh AP (2019) Synthesis and characterization of cellulose based graft copolymers with binary vinyl monomers for efficient removal of cationic dyes and Pb (II) ions. J Polym Res 26:135. https://doi.org/10.1007/s10965-019-1790-9

    Article  CAS  Google Scholar 

  2. Mohammed MQ, Ismail HK, Alesary HF, Barton S (2022) Use of a Schiff base-modified conducting polymer electrode for electrochemical assay of Cd (II) and Pb (II) ions by square wave voltammetry. Chem Pap 76:715–729. https://doi.org/10.1007/s11696-021-01882-7

    Article  CAS  Google Scholar 

  3. Mustafa FS, Güran M, Gazi M (2020) Effective removal of dyes from aqueous solutions using a novel antibacterial polymeric adsorbent. J Polym Res 27:247. https://doi.org/10.1007/s10965-020-02227-w

    Article  CAS  Google Scholar 

  4. Yasin SA, Zeebaree SYS, Sharaf Zeebaree AY, Haji Zebari OI, Saeed IA (2021) The efficient removal of methylene blue dye using CuO/PET nanocomposite in aqueous solutions. Catalysts 11:241. https://doi.org/10.3390/catal11020241

    Article  CAS  Google Scholar 

  5. Gupta VK (2009) Application of low-cost adsorbents for dye removal–a review. J Environ manage 90:2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  6. Jain H, Garg MC (2021) Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. Environ Technol Innov 23:101561. https://doi.org/10.1016/j.eti.2021.101561

    Article  CAS  Google Scholar 

  7. Senguttuvan S, Senthilkumar P, Janaki V, Kamala-Kannan S (2021) Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters-A review. Chemosphere 267:129201. https://doi.org/10.1016/j.chemosphere.2020.129201

    Article  CAS  PubMed  Google Scholar 

  8. Thorat MN, Jagtap A, Dastager SG (2021) Fabrication of bacterial nanocellulose/polyethyleneimine (PEI-BC) based cationic adsorbent for efficient removal of anionic dyes. J Polym Res 28:354. https://doi.org/10.1007/s10965-021-02702-y

    Article  CAS  Google Scholar 

  9. Ardani MR, Pang AL, Pal U, Zheng R, Arsad A, Hamzah AA, Ahmadipour M (2022) Ultrasonic-assisted polyaniline-multiwall carbon nanotube photocatalyst for efficient photodegradation of organic pollutants. J Water Process Eng 46:102557. https://doi.org/10.1016/j.jwpe.2021.102557

    Article  Google Scholar 

  10. Koohi P, Rahbar-kelishami A, Shayesteh H (2021) Efficient removal of congo red dye using Fe3O4/NiO nanocomposite: Synthesis and characterization. Environ Technol Innov 23:101559. https://doi.org/10.1016/j.eti.2021.101559

    Article  CAS  Google Scholar 

  11. Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Khan MR (2021) Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: Modeling and mechanism study. Sustain Chem Pharm 20:100379. https://doi.org/10.1016/j.scp.2021.100379

    Article  CAS  Google Scholar 

  12. Gil A, Assis F, Albeniz S, Korili S (2011) Removal of dyes from wastewaters by adsorption on pillared clays. Chem Eng J 168:1032–1040. https://doi.org/10.1016/j.cej.2011.01.078

    Article  CAS  Google Scholar 

  13. Tony M (2020) Zeolite-based adsorbent from alum sludge residue for textile wastewater treatment. Int J Environ Science Technol 17:2485–2498. https://doi.org/10.1007/s13762-020-02646-8

    Article  CAS  Google Scholar 

  14. Elwakeel KZ (2009) Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins. J Hazard Mater 167:383–392. https://doi.org/10.1016/j.jhazmat.2009.01.051

    Article  CAS  PubMed  Google Scholar 

  15. Minitha C, Lalitha M, Jeyachandran Y, Senthilkumar L, Rajendra KRT (2017) Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: Co-action of electrostatic and π–π interactions. Mater Chem Phys 194:243–252. https://doi.org/10.1016/j.matchemphys.2017.03.048

    Article  CAS  Google Scholar 

  16. Shang L, Bian T, Zhang B, Zhang D, Wu LZ, Tung CH, Yin Y, Zhang T (2014) Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem 126:254–258. https://doi.org/10.1002/ange.201306863

    Article  Google Scholar 

  17. Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr polym 95:501–507. https://doi.org/10.1016/j.carbpol.2013.01.094

    Article  CAS  PubMed  Google Scholar 

  18. Vellaichamy B, Periakaruppan P, Nagulan B (2017) Reduction of Cr6+ from wastewater using a novel in situ-synthesized PANI/MnO2/TiO2 nanocomposite: renewable, selective, stable, and synergistic catalysis. ACS Sustainable Chem Eng 5:9313–9324. https://doi.org/10.1021/acssuschemeng.7b02324

    Article  CAS  Google Scholar 

  19. Alesary HF, Ismail HK, Mohammed MQ, Mohammed HN, Abbas ZK, Barton S (2021) A comparative study of the effect of organic dopant ions on the electrochemical and chemical synthesis of the conducting polymers polyaniline, poly (o-toluidine) and poly (o-methoxyaniline). Chem Pap 75:5087–5101. https://doi.org/10.1007/s11696-020-01477-8

    Article  CAS  Google Scholar 

  20. Ismail HK, Alesary HF, Mohammed MQ (2019) Synthesis and characterisation of polyaniline and/or MoO2/graphite composites from deep eutectic solvents via chemical polymerisation. J Polym Res 26:65. https://doi.org/10.1007/s10965-019-1732-6

    Article  CAS  Google Scholar 

  21. Sjahro N, Yunus R, Abdullah LC, Rashid SA, Asis AJ, Akhlisah Z (2021) Recent advances in the application of cellulose derivatives for removal of contaminants from aquatic environments. Cellulose 28:7521–7557. https://doi.org/10.1007/s10570-021-03985-6

    Article  CAS  Google Scholar 

  22. Mallakpour S, Ezhieh AN (2017) Preparation and characterization of chitosan-poly (vinyl alcohol) nanocomposite films embedded with functionalized multi-walled carbon nanotube. Carbohydr polym 166:377–386. https://doi.org/10.1016/j.carbpol.2017.02.086

    Article  CAS  PubMed  Google Scholar 

  23. Zare EN, Motahari A, Sillanpää M (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:173–195. https://doi.org/10.1016/j.envres.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  24. Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy A, Kamala-Kannan S (2012) Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr Polym 90:1437–1444. https://doi.org/10.1016/j.carbpol.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  25. Gomes RF, de Azevedo ACN, Pereira AG, Muniz EC, Fajardo AR, Rodrigues FH (2015) Fast dye removal from water by starch-based nanocomposites. J Colloid Interface Sci 454:200–209. https://doi.org/10.1016/j.jcis.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  26. Cheng R, Xiang B, Li Y, Zhang M (2011) Application of dithiocarbamate-modified starch for dyes removal from aqueous solutions. J Hazard Mater 188:254–260. https://doi.org/10.1016/j.jhazmat.2011.01.104

    Article  CAS  PubMed  Google Scholar 

  27. Saberi A, Alipour E, Sadeghi M (2019) Superabsorbent magnetic Fe3O4-based starch-poly (acrylic acid) nanocomposite hydrogel for efficient removal of dyes and heavy metal ions from water. J Polym Res 26:27. https://doi.org/10.1007/s10965-019-1917-z

    Article  CAS  Google Scholar 

  28. Haroon M, Ullah R, Mehmood S, Haq F (2021) Synthesis and characterization of starch-g-polymethyl methacrylate and their properties as adsorbents for removing Rhodamine 6G from water. J Polym Res 28:330. https://doi.org/10.1007/s10965-021-02692-x

    Article  CAS  Google Scholar 

  29. Wang H, Duan M, Guo Y, Wang C, Shi Z, Liu J, Lv J (2018) Graphene oxide edge grafting of polyaniline nanocomposite: an efficient adsorbent for methylene blue and methyl orange. Water Sci Technol 77:2751–2760. https://doi.org/10.2166/wst.2018.250

    Article  CAS  PubMed  Google Scholar 

  30. Gheydari M, Dorraji MS, Fazli M, Rasoulifard M, Almaie S, Daneshvar H, Ashjari HR (2021) Preparation of open-cell polyurethane nanocomposite foam with Ag3PO4 and GO: antibacterial and adsorption characteristics. J Polym Res 28:69. https://doi.org/10.1007/s10965-021-02432-1

    Article  CAS  Google Scholar 

  31. Zhang J, Azam MS, Shi C, Huang J, Yan B, Liu Q, Zeng H (2015) Poly (acrylic acid) functionalized magnetic graphene oxide nanocomposite for removal of methylene blue. RSC Adv 5:32272–32282. https://doi.org/10.1039/C5RA01815C

    Article  CAS  Google Scholar 

  32. Ali M, Husain Q, Sultana S, Ahmad M (2018) Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye. Chemosphere 202:198–207. https://doi.org/10.1016/j.chemosphere.2018.03.073

    Article  CAS  PubMed  Google Scholar 

  33. Abd Ali L, Ismail HK, Alesary HF, Aboul-Enein H (2021) A nanocomposite based on polyaniline, nickel and manganese oxides for dye removal from aqueous solutions. Int J Environ Sci Technol 18:2031–2050. https://doi.org/10.1007/s13762-020-02961-0

    Article  CAS  Google Scholar 

  34. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  35. Kar P, Pradhan NC, Adhikari B (2008) A novel route for the synthesis of processable conducting poly (m-aminophenol). Mater Chem Phys 111:59–64. https://doi.org/10.1016/j.matchemphys.2008.03.012

    Article  CAS  Google Scholar 

  36. Kojidi MH, Aliakbar A (2019) Synthesis of graphene oxide-based poly (p-aminophenol) composite and its application in solid phase extraction of trace amount of Ni (II) from aquatic samples. Environ Monit Assess 191:145. https://doi.org/10.1007/s10661-019-7282-x

    Article  CAS  PubMed  Google Scholar 

  37. Verma SK, Choudhury A, Kar P (2015) Interaction of multi-walled carbon nanotube with poly (m-aminophenol) in their processable conducting nanocomposite. Physica Status Solidi (a) 212:2044–2052. https://doi.org/10.1002/pssa.201431910

    Article  CAS  Google Scholar 

  38. Usman A, Hussain Z, Riaz A, Khan AN (2016) Enhanced mechanical, thermal and antimicrobial properties of poly (vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr Polym 153:592–599. https://doi.org/10.1016/j.carbpol.2016.08.026

    Article  CAS  PubMed  Google Scholar 

  39. Thenmozhi G, Arockiasamy P, Santhi RJ (2014) Isomers of poly aminophenol: chemical synthesis, characterization, and its corrosion protection aspect on mild steel in 1 M HCl. Int J Electrochem. https://doi.org/10.1155/2014/961617

  40. Kong Y, Zhou Y, Shan X, Jiang Y, Yao C (2011) Electropolymerization of m-aminophenol on expanded graphite and its electrochemical properties. Synth Met 161:2301–2305. https://doi.org/10.1016/j.synthmet.2011.08.038

    Article  CAS  Google Scholar 

  41. Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym 84:631–637. https://doi.org/10.1016/j.carbpol.2010.12.041

    Article  CAS  Google Scholar 

  42. Ovchinnikov OV, Evtukhova AV, Kondratenko TS, Smirnov MS, Khokhlov VY, Erina OV (2016) Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib Spectrosc 86:181–189. https://doi.org/10.1016/j.vibspec.2016.06.016

    Article  CAS  Google Scholar 

  43. Alver E, Metin AÜ, Brouers F (2020) Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int J Biol Macromol 154:104–113. https://doi.org/10.1016/j.ijbiomac.2020.02.330

    Article  CAS  PubMed  Google Scholar 

  44. Sousa HR, Silva LS, Sousa PAA, Sousa RRM, Fonseca MG, Osajima JA, Silva-Filho EC (2019) Evaluation of methylene blue removal by plasma activated palygorskites. J Mater Res Technol 8:5432–5442. https://doi.org/10.1016/j.jmrt.2019.09.011

    Article  CAS  Google Scholar 

  45. Pourjavadi A, Nazari M, Kabiri B, Hosseini SH, Bennett C (2016) Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue. RSC Adv 6:10430–10437. https://doi.org/10.1039/C5RA21629J

    Article  CAS  Google Scholar 

  46. Duman O, Polat TG, Diker CÖ, Tunç S (2020) Agar/κ-carrageenan composite hydrogel adsorbent for the removal of methylene blue from water. Int J Biol Macromol 160:823–835. https://doi.org/10.1016/j.ijbiomac.2020.05.191

    Article  CAS  PubMed  Google Scholar 

  47. Lee LY, Gan S, Tan MSY, Lim SS, Lee XJ, Lam YF (2016) Effective removal of acid blue 113 dye using overripe cucumis sativus peel as an eco-friendly biosorbent from agricultural residue. J Clean Prod 113:194–203. https://doi.org/10.1016/j.jclepro.2015.11.016

    Article  CAS  Google Scholar 

  48. Sharma K, Dalai AK, Vyas RK (2018) Removal of synthetic dyes from multicomponent industrial wastewaters. Rev Chem Eng 34:107–134. https://doi.org/10.1515/revce-2016-0042

    Article  CAS  Google Scholar 

  49. Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q, Du B (2015) EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10. https://doi.org/10.1016/j.cej.2015.06.043

    Article  CAS  Google Scholar 

  50. Yu KL, Lee XJ, Ong HC, Chen WH, Chang JS, Lin CS, Show PL, Ling TC (2021) Adsorptive removal of cationic methylene blue and anionic congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ Pollut 272:115986. https://doi.org/10.1016/j.envpol.2020.115986

    Article  CAS  PubMed  Google Scholar 

  51. Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S (2010) Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261:52–60. https://doi.org/10.1016/j.desal.2010.05.032

    Article  CAS  Google Scholar 

  52. Hameed B, Krishni R, Sata S (2009) A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J Hazard Mater 162:305–311. https://doi.org/10.1016/j.jhazmat.2008.05.036

    Article  CAS  PubMed  Google Scholar 

  53. Srivastava VC, Mall ID, Mishra IM (2006) Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J Hazard Mater 134:257–267. https://doi.org/10.1016/j.jhazmat.2005.11.052

    Article  CAS  PubMed  Google Scholar 

  54. Wang S, Zhai YY, Gao Q, Luo WJ, Xia H, Zhou CG (2014) Highly efficient removal of acid red 18 from aqueous solution by magnetically retrievable chitosan/carbon nanotube: batch study, isotherms, kinetics, and thermodynamics. J Chem Eng Data 59:39–51. https://doi.org/10.1021/je400700c

    Article  CAS  Google Scholar 

  55. Singh SK, Townsend TG, Mazyck D, Boyer TH (2012) Equilibrium and intra-particle diffusion of stabilized landfill leachate onto micro-and meso-porous activated carbon. Water Res 46:491–499. https://doi.org/10.1016/j.watres.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  56. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53:97–110. https://doi.org/10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  57. Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  58. McKay G, Ho Y, Ng J (1999) Biosorption of copper from waste waters: a review. Sep Purif Methods 28:87–125. https://doi.org/10.1080/03602549909351645

    Article  CAS  Google Scholar 

  59. Elovich SY, Zhabrova G (1939) Mechanism of the catalytic hydrogenation of ethylene on nickel. I. Kinetics of the process. J Phys Chem 13:1761.

  60. Weber WJ Jr, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59. https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

  61. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids J Am Chem Soc 38:2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  62. Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57(1):385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  CAS  Google Scholar 

  63. Tempkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12(1):327

    Google Scholar 

  64. Ali I, Alharbi OM, Alothman ZA, Badjah AY, Alwarthan A (2018) Artificial neural network modelling of amido black dye sorption on iron composite nano material: kinetics and thermodynamics studies. J Mol Liq 250:1–8. https://doi.org/10.1016/j.molliq.2017.11.163

    Article  CAS  Google Scholar 

  65. Maruthapandi M, Kumar VB, Luong JH, Gedanken A (2018) Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption on polyaniline and polypyrrole macro–nanoparticles synthesized by C-Dot-Initiated polymerization. ACS Omega 3(7):7196–7203. https://doi.org/10.1021/acsomega.8b00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li B, Guo J, Lv K, Fan J (2019) Adsorption of methylene blue and Cd (II) onto maleylated modified hydrochar from water. Environ Pollut 254:113014. https://doi.org/10.1016/j.envpol.2019.113014

    Article  CAS  PubMed  Google Scholar 

  67. Cheng J, Zhan C, Wu J, Cui Z, Si J, Wang Q, Peng X, Turng LS (2020) Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine. ACS Omega 5:5389–5400. https://doi.org/10.1021/acsomega.9b04425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dao MU, Le HS, Hoang HY, Tran VA, Doan VD, Le TTN, Sirotkin A (2021) Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: Facile preparation, characterization, and adsorption properties. Environ Res 198:110481. https://doi.org/10.1016/j.envres.2020.110481

    Article  CAS  PubMed  Google Scholar 

  69. Kuang Y, Zhang X, Zhou S (2020) Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water 12:587. https://doi.org/10.3390/w12020587

    Article  Google Scholar 

  70. Zhu W, Jiang X, Jiang K, Liu F, You F, Yao C (2021) Fabrication of reusable carboxymethyl cellulose/graphene oxide composite aerogel with large surface area for adsorption of methylene blue. Nanomaterials 11:1609. https://doi.org/10.3390/nano11061609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pasichnyk M, Václavíková M, Melnyk I (2021) Fabrication of polystyrene-acrylic/ZnO nanocomposite films for effective removal of methylene blue dye from water. J Polym Res 28:56. https://doi.org/10.1007/s10965-021-02418-z

    Article  CAS  Google Scholar 

  72. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14:305–313. https://doi.org/10.1080/16583655.2020.1736767

    Article  Google Scholar 

  73. Minisy IM, Salahuddin NA, Ayad MM (2021) Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl Clay Scie 203:105993. https://doi.org/10.1016/j.clay.2021.105993

    Article  CAS  Google Scholar 

  74. Çatlıoğlu F, Akay S, Turunç E, Gözmen B, Anastopoulos I, Kayan B, Kalderis D (2021) Preparation and application of Fe-modified banana peel in the adsorption of methylene blue: process optimization using response surface methodology. Environ Nanotechnol Monit Manag 16:100517. https://doi.org/10.1016/j.enmm.2021.100517

    Article  Google Scholar 

  75. Haider S, Binagag FF, Haider A, Al-Masry WA (2014) Electrospun oxime-grafted-polyacrylonitrile nanofiber membrane and its application to the adsorption of dyes. J Polym Res 21:371. https://doi.org/10.1007/s10965-014-0371-1

    Article  CAS  Google Scholar 

  76. Zhang T, Zhang W, Xi H, Li Q, Shen M, Ying G, Zhang J (2021) Polydopamine functionalized cellulose-MXene composite aerogel with superior adsorption of methylene blue. Cellulose 28:4281–4293. https://doi.org/10.1007/s10570-021-03737-6

    Article  CAS  Google Scholar 

  77. Zidan T, Yehia A, Abdelhamid AE (2021) Crosslinked poly (methacrylic acid)/organoclay nanocomposites: synthesis, characterization and methylene blue adsorption from aquatic environments. J Polym Res 28(8):306. https://doi.org/10.1007/s10965-021-02665-0

    Article  CAS  Google Scholar 

  78. Zeebaree SYS, Zeebaree AYS, Zebari OIH, Zebari AYS (2021) Sustainable fabrication, optical properties and rapid performance of bio-engineered copper nanoparticles in removal of toxic methylene blue dye in an aqueous medium. Current Research in Green and Sustainable Chemistry 4:100103. https://doi.org/10.1016/j.crgsc.2021.100103

    Article  Google Scholar 

  79. Nekouei F, Kargarzadeh H, Nekouei S, Keshtpour F, Makhlouf ASH (2017) Efficient method for determination of methylene blue dye in water samples based on a combined dispersive solid phase and cloud point extraction using Cu (OH)2 nanoflakes: central composite design optimization. Anal Bioanal Chem 409:1079–1092. https://doi.org/10.1007/s00216-016-0026-7

    Article  CAS  PubMed  Google Scholar 

  80. Hassan SS, Nafady A, Solangi AR, Kalhoro MS, Abro MI, Sherazi STH (2015) Ultra-trace level electrochemical sensor for methylene blue dye based on nafion stabilized ibuprofen derived gold nanoparticles. Sens Actuators B Chem 208:320–326. https://doi.org/10.1016/j.snb.2014.11.021

    Article  CAS  Google Scholar 

  81. Liu X, An S, Wang Y, Yang Q, Zhang L (2015) Rapid selective separation and recovery of a specific target dye from mixture consisted of different dyes by magnetic Ca-ferrites nanoparticles. Chem Eng J 262:517–526. https://doi.org/10.1016/j.cej.2014.10.002

    Article  CAS  Google Scholar 

  82. Xiao Z, Zhou J, Fan L, Li Y, He Y, Wang Y et al (2021) Controllable Preparation of Cu-MOF-Coated Carboxyl Filter Paper for Simultaneous Removal of Organic Dye and Metal Ions. Ind Eng Chem Res 60(19):7311–7319. https://doi.org/10.1021/acs.iecr.1c00140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universities of Koya and Kerbala for providing the required materials and instruments for this work. The authors would like to acknowledge Dr. Mark Watkins (University of Leicester) for helping and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani K. Ismail.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 350 KB)

Supplementary file2 (DOCX 366 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, H.K., Ali, L.I.A., Alesary, H.F. et al. Synthesis of a poly(p-aminophenol)/starch/graphene oxide ternary nanocomposite for removal of methylene blue dye from aqueous solution. J Polym Res 29, 159 (2022). https://doi.org/10.1007/s10965-022-03013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03013-6

Keywords

Navigation