Skip to main content

Advertisement

Log in

Experimental investigation of nano/microencapsulated phase change material emulsion based building wall paint for solar thermal energy storage

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Heat accumulation inside the buildings is caused by climate change, urban heat, and frequent electronic components. In the present work, thermal energy storage decorative paint is prepared using nano/microencapsulated phase change material (MPCM). An oil-in-water seeded emulsion method is employed to encapsulate n-nonadecane phase change material (PCM) into [poly (methyl methacrylate-co-butyl acrylate-co-methacrylic acid)] (PMMA-co-BA-co-MAA) copolymer shell. The outdoor building paint is formed by blending PMMA-co-BA-co-MAA acrylic binder and MPCM1 emulsion binder with a specially formulated mill base paste. The MPCM1 emulsion is prepared with a 1:1 core to shell ratio and is then blended with a PMMA-co-BA-co-MAA acrylic emulsion binder, and these blends are added into mill base in 50 wt.% (A1-MPCM1) and 60 wt.% (A2-MPCM1). Thermal energy transfer analysis was used to monitor temperature change from outdoor of the building to the indoor one. The implications of MPCM1 loading on the thermal and mechanical properties of paint are evaluated in this work. Phase change properties, morphological behavior, thermal degradation behavior, chemical nature of PCM, copolymer shell, and microcapsules were analyzed using differential scanning calorimeter (DSC), scanning electron microscopy (SEM), optical microscopy (POM), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). DSC results of MPCM1, A1-MPCM (50 wt.% MPCM1 in paint), and A2-MPCM1(60 wt.% MPCM1 in paint) showed 138.88 J/g, 35.37 J/g, and 41.23 J/g melting enthalpy and 137.21 J/g, 33.89 J/g, and 41.72 J/g crystallization enthalpy, respectively. Other properties of the A1-MPCM1 and A2-MPCM1 were investigated for pencil hardness, stain resistance, water absorption, and flexibility. Furthermore, thermal energy storage efficiency is increased with 50 wt.% and 60 wt.% loadings in outdoor building paint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Santamouris M (2014) Cooling the cities - A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol Energy 103:682–703. https://doi.org/10.1016/j.solener.2012.07.003

    Article  Google Scholar 

  2. Solecki WD, Rosenzweig C, Parshall L et al (2005) Mitigation of the heat island effect in urban New Jersey. Environ Hazards 6:39–49. https://doi.org/10.1016/j.hazards.2004.12.002

    Article  Google Scholar 

  3. Sarbu I, Sebarchievici C (2018) A comprehensive review of thermal energy storage. Sustain 10. https://doi.org/10.3390/su10010191

  4. Akeiber HJ, Wahid MA, Hussen HM, Mohammad AT (2014) Review of development survey of phase change material models in building applications. Sci World J 2014. https://doi.org/10.1155/2014/391690

  5. Cabeza LF, Castell A, Barreneche C et al (2011) Materials used as PCM in thermal energy storage in buildings : A review. Renew Sustain Energy Rev 15:1675–1695. https://doi.org/10.1016/j.rser.2010.11.018

    Article  CAS  Google Scholar 

  6. Lin W, Ling Z, Zhang Z, Fang X (2020) Experimental and numerical investigation of sebacic acid/expanded graphite composite phase change material in a double-spiral coiled heat exchanger. J Energy Storage 32:101849. https://doi.org/10.1016/j.est.2020.101849

    Article  Google Scholar 

  7. Kuznik F, David D, Johannes K, Roux JJ (2011) A review on phase change materials integrated in building walls. Renew Sustain Energy Rev 15:379–391. https://doi.org/10.1016/j.rser.2010.08.019

    Article  CAS  Google Scholar 

  8. Zhou Z, Zhang Z, Zuo J et al (2015) Phase change materials for solar thermal energy storage in residential buildings in cold climate. Renew Sustain Energy Rev 48:692–703. https://doi.org/10.1016/j.rser.2015.04.048

    Article  CAS  Google Scholar 

  9. Iqbal K, Khan A, Sun D et al (2019) Phase change materials, their synthesis and application in textiles—a review. J Text Inst 110:625–638. https://doi.org/10.1080/00405000.2018.1548088

    Article  Google Scholar 

  10. Chen C, Wang L, Huang Y (2008) A novel shape-stabilized PCM: Electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite. Mater Lett 62:3515–3517. https://doi.org/10.1016/j.matlet.2008.03.034

    Article  CAS  Google Scholar 

  11. Yu C, Youn JR, Song YS (2021) Reversible thermo-electric energy harvesting with phase change material (PCM) composites. J Polym Res 28:1–9. https://doi.org/10.1007/s10965-021-02642-7

    Article  CAS  Google Scholar 

  12. Zhang H, Liu Z, Mai J et al (2021) Super-elastic smart phase change material (SPCM) for thermal energy storage. Chem Eng J 411:128482. https://doi.org/10.1016/j.cej.2021.128482

    Article  CAS  Google Scholar 

  13. Sundararajan S, Samui AB, Kulkarni PS (2017) Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A 5:18379–18396. https://doi.org/10.1039/c7ta04968d

    Article  CAS  Google Scholar 

  14. Soares N, Costa JJ, Gaspar AR, Santos P (2013) Review of passive PCM latent heat thermal energy storage systems towards buildings ’ energy efficiency. Energy Build 59:82–103. https://doi.org/10.1016/j.enbuild.2012.12.042

    Article  Google Scholar 

  15. Otero JA, Manuel E, Cooper H, Perez-Alvarez R (2020) Thermal expansion effects on the one-dimensional liquid-solid phase transition in high temperature phase change materials. AIP Advances 9, 025125 (2019). https://doi.org/10.1063/1.5086049

  16. Hu H, Jin X, Zhang X (2017) Effect of Supercooling on the Solidification Process of the Phase Change Material. Energy Procedia 105:4321–4327. https://doi.org/10.1016/j.egypro.2017.03.905

    Article  CAS  Google Scholar 

  17. Chen F, Wolcott M (2015) Polyethylene/paraffin binary composites for phase change material energy storage in building: A morphology, thermal properties, and paraffin leakage study. Sol Energy Mater Sol Cells 137:79–85. https://doi.org/10.1016/j.solmat.2015.01.010

    Article  CAS  Google Scholar 

  18. Sundararajan S, Samui AB, Kulkarni PS (2019) Crosslinked polymer networks of poly(ethylene glycol) (PEG) and hydroxyl terminated poly(dimethyl siloxane) (HTPDMS) as polymeric phase change material for thermal energy storage. Sol Energy 181:187–194. https://doi.org/10.1016/j.solener.2019.01.091

    Article  CAS  Google Scholar 

  19. Salaün F, Vroman I (2008) Influence of core materials on thermal properties of melamine-formaldehyde microcapsules. Eur Polym J 44:849–860. https://doi.org/10.1016/j.eurpolymj.2007.11.018

    Article  CAS  Google Scholar 

  20. Bao J, Zou D, Zhu S et al (2021) A medium-temperature, metal-based, microencapsulated phase change material with a void for thermal expansion. Chem Eng J 415:128965. https://doi.org/10.1016/j.cej.2021.128965

    Article  CAS  Google Scholar 

  21. Sarı A, Alkan C, Bilgin C, Bicer A (2018) Preparation, Characterization and Thermal Energy Storage Properties of Micro/Nano Encapsulated Phase Change Material with Acrylic-Based Polymer. Polym Sci Ser B 60:58–68. https://doi.org/10.1134/S1560090418010128

    Article  Google Scholar 

  22. Ma Y, Chu X, Tang G, Yao Y (2013) Synthesis and thermal properties of acrylate-based polymer shell microcapsules with binary core as phase change materials. Mater Lett 91:133–135. https://doi.org/10.1016/j.matlet.2012.09.084

    Article  CAS  Google Scholar 

  23. Srinivasaraonaik B, Singh LP, Tyagi I et al (2020) Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage. Int J Energy Res 44:3854–3864. https://doi.org/10.1002/er.5182

    Article  CAS  Google Scholar 

  24. Naikwadi AT, Samui AB, Mahanwar PA (2020) Melamine-formaldehyde microencapsulated n-Tetracosane phase change material for solar thermal energy storage in coating. Sol Energy Mater Sol Cells 215. https://doi.org/10.1016/j.solmat.2020.110676

  25. You M, Wang X, Zhang X et al (2011) Microencapsulated n-Octadecane with styrene-divinybenzene co-polymer shells. J Polym Res 18:49–58. https://doi.org/10.1007/s10965-010-9390-8

    Article  CAS  Google Scholar 

  26. Hu D, Wang Z, Ma W (2021) Fabrication and characterization of a novel polyurethane microencapsulated phase change material for thermal energy storage. Prog Org Coatings 151:106006. https://doi.org/10.1016/j.porgcoat.2020.106006

    Article  CAS  Google Scholar 

  27. Salaün F, Devaux E, Bourbigot S, Rumeau P (2010) Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochim Acta 506:82–93. https://doi.org/10.1016/j.tca.2010.04.020

    Article  CAS  Google Scholar 

  28. Li W, Zhang X, xiang, Wang X chen, et al (2012) Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage. Energy 38:249–254. https://doi.org/10.1016/j.energy.2011.12.005

    Article  CAS  Google Scholar 

  29. Kamali Moghaddam M, Mortazavi SM (2015) Preparation, characterisation and thermal properties of calcium alginate/n-nonadecane microcapsules fabricated by electro-coextrusion for thermo-regulating textiles. J Microencapsul 32:737–744. https://doi.org/10.3109/02652048.2015.1073388

    Article  CAS  PubMed  Google Scholar 

  30. Sari A, Alkan C, Biçer A et al (2014) Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage. Energy Convers Manag 86:614–621. https://doi.org/10.1016/j.enconman.2014.05.092

    Article  CAS  Google Scholar 

  31. Wang H, Wang JP, Wang X et al (2013) Preparation and Properties of Microencapsulated Phase Change Materials Containing Two-Phase Core Materials. Ind Eng Chem Res 52:14706–14712. https://doi.org/10.1021/ie401055r

    Article  CAS  Google Scholar 

  32. Khadiran T, Hussein MZ, Zainal Z, Rusli R (2015) Nano-encapsulated n-nonadecane using vinyl copolymer shell for thermal energy storage medium. Macromol Res 23:658–669. https://doi.org/10.1007/s13233-015-3088-z

    Article  CAS  Google Scholar 

  33. Rezvanpour M, Hasanzadeh M, Azizi D et al (2018) Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage. Mater Chem Phys 215:299–304. https://doi.org/10.1016/j.matchemphys.2018.05.044

    Article  CAS  Google Scholar 

  34. Koh E, Kim NK, Shin J, Kim YW (2014) Polyurethane microcapsules for self-healing paint coatings. RSC Adv 4:16214–16223. https://doi.org/10.1039/c4ra00213j

    Article  CAS  Google Scholar 

  35. Szabó T, Molnár-Nagy L, Bognár J et al (2011) Self-healing microcapsules and slow release microspheres in paints. Prog Org Coatings 72:52–57. https://doi.org/10.1016/j.porgcoat.2011.03.014

    Article  CAS  Google Scholar 

  36. Es-Haghi H, Mirabedini SM, Imani M, Farnood RR (2016) Mechanical and self-healing properties of a water-based acrylic latex containing linseed oil filled microcapsules: Effect of pre-silanization of microcapsules’ shell compound. Compos Part B Eng 85:305–314. https://doi.org/10.1016/j.compositesb.2015.09.015

    Article  CAS  Google Scholar 

  37. Jouhara H, Żabnieńska-Góra A, Khordehgah N, et al (2020) Latent thermal energy storage technologies and applications: A review. Int J Thermofluids 5–6. https://doi.org/10.1016/j.ijft.2020.100039

  38. Faraj K, Khaled M, Faraj J et al (2020) Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renew Sustain Energy Rev 119:109579. https://doi.org/10.1016/j.rser.2019.109579

    Article  Google Scholar 

  39. Ali S (2014) Phase change materials integrated in building walls : A state of the art review. Renew Sustain Energy Rev 31:870–906. https://doi.org/10.1016/j.rser.2013.12.042

    Article  Google Scholar 

  40. Pomianowski M, Heiselberg P, Zhang Y (2013) Review of thermal energy storage technologies based on PCM application in buildings. Energy Build 67:56–69. https://doi.org/10.1016/j.enbuild.2013.08.006

    Article  Google Scholar 

  41. Kuznik F, Virgone J, Roux JJ (2008) Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation. Energy Build 40:148–156. https://doi.org/10.1016/j.enbuild.2007.01.022

    Article  Google Scholar 

  42. Tabares-velasco PC, Christensen C, Bianchi M (2012) Veri fi cation and validation of EnergyPlus phase change material model for opaque wall assemblies. Build Environ 54:186–196. https://doi.org/10.1016/j.buildenv.2012.02.019

    Article  Google Scholar 

  43. Chinnasamy V, Appukuttan S (2019) Preparation and thermal properties of lauric acid / myristyl alcohol as a novel binary eutectic phase change material for indoor thermal comfort. 1–9. https://doi.org/10.1002/est2.80

  44. Jeong SG, Chang SJ, Wi S et al (2016) Development and performance evaluation of heat storage paint with MPCM for applying roof materials as basic research. Energy Build 112:62–68. https://doi.org/10.1016/j.enbuild.2015.12.001

    Article  Google Scholar 

  45. Han X, Li Y, Yuan L et al (2017) Experimental study on effect of microencapsulated phase change coating on indoor temperature response and energy consumption. Adv Mech Eng 9:1–8. https://doi.org/10.1177/1687814017703901

    Article  Google Scholar 

  46. Lei J, Kumarasamy K, Zingre KT et al (2017) Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics. Appl Energy 190:57–63. https://doi.org/10.1016/j.apenergy.2016.12.114

    Article  Google Scholar 

  47. Su W, Darkwa J, Kokogiannakis G et al (2017) Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage. Energy Procedia 121:95–101. https://doi.org/10.1016/j.egypro.2017.07.485

    Article  CAS  Google Scholar 

  48. Hasan MI, Basher HO, Shdhan AO (2018) Experimental investigation of phase change materials for insulation of residential buildings. Sustain Cities Soc 36:42–58. https://doi.org/10.1016/j.scs.2017.10.009

    Article  Google Scholar 

  49. Qiao Y, Yang L, Bao J et al (2019) Reduced-scale experiments on the thermal performance of phase change material wallboard in different climate conditions. Build Environ 160:106191. https://doi.org/10.1016/j.buildenv.2019.106191

    Article  Google Scholar 

  50. Xiang B, Yang Z, Zhang J (2021) ASA/SEBS/paraffin composites as phase change material for potential cooling and heating applications in building. Polym Adv Technol 32:420–427. https://doi.org/10.1002/pat.5097

    Article  CAS  Google Scholar 

  51. Karlessi T, Santamouris M, Synnefa A et al (2011) Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings. Build Environ 46:570–576. https://doi.org/10.1016/j.buildenv.2010.09.003

    Article  Google Scholar 

  52. Xu T, Chen Q, Zhang Z et al (2016) Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material. Build Environ 104:172–177. https://doi.org/10.1016/j.buildenv.2016.05.003

    Article  Google Scholar 

  53. Zhang D, Li Z, Zhou J, Wu K (2004) Development of thermal energy storage concrete. Cem Concr Res 34:927–934. https://doi.org/10.1016/j.cemconres.2003.10.022

    Article  CAS  Google Scholar 

  54. Yeon JH, Kim KK (2018) Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement. Constr Build Mater 177:202–209. https://doi.org/10.1016/j.conbuildmat.2018.05.113

    Article  CAS  Google Scholar 

  55. Alawadhi EM (2008) Thermal analysis of a building brick containing phase change material. Energy Build 40:351–357. https://doi.org/10.1016/j.enbuild.2007.03.001

    Article  Google Scholar 

  56. Zhang C, Chen Y, Wu L, Shi M (2011) Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures. Energy Build 43:3514–3520. https://doi.org/10.1016/j.enbuild.2011.09.028

    Article  Google Scholar 

  57. Mahdaoui M, Hamdaoui S, Ait Msaad A, et al (2020) Building bricks with phase change material (PCM): Thermal performances. Constr Build Mater 121315. https://doi.org/10.1016/j.conbuildmat.2020.121315

  58. Li H, Liu X, Fang G (2010) Preparation and characteristics of n-nonadecane/cement composites as thermal energy storage materials in buildings. Energy Build 42:1661–1665. https://doi.org/10.1016/j.enbuild.2010.04.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Defence Research and Development Organization, India, for the financial help. The authors also would like to thank the Institute of Chemical Technology (ICT), Mumbai, for laboratory support.

Funding

The authors would like to thank Defense Research and Development Organization (DRDO) (NRB/4003/PG/387 dated 17-01-2017), New Delhi, India, for the funding.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Amol Tarachand Naikwadi.

Ethics declarations

Conflicts of interest/Competing interests

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naikwadi, A.T., Samui, A.B. & Mahanwar, P. Experimental investigation of nano/microencapsulated phase change material emulsion based building wall paint for solar thermal energy storage. J Polym Res 28, 438 (2021). https://doi.org/10.1007/s10965-021-02808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02808-3

Keywords

Navigation