Skip to main content

Advertisement

Log in

In vivo and in vitro evaluation of the wound healing properties of chitosan extracted from Trametes versicolor

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Nanofiber dressings, a group of bioactive wound dressings, have received a great deal of attention due to their unique properties, such as surface-to-volume ratio, three-dimensional structure, and porosity. These wound dressings accelerate wound healing by maintaining moisture at the injury site, preventing infection, and increasing oxygen delivery. Due to its high compatibility, biodegradability, and bioactivity, chitosan is a widely used compound in wound dressings. According to studies, one of the best sources for chitosan is its extraction and production from medicinal fungi. Mycelium of the fungus Trametes versicolor is used to produce chitosan. In this study, nanofibers containing T. versicolor chitosan and PVA were prepared by electrospinning, and their wound healing properties were investigated. The manufacturing conditions for nanofibers were optimized, and their properties were investigated using various analytical techniques, including SEM, FTIR, and tensile mechanical testing. Nanofibers’ biological properties (antibacterial and cytotoxicity) and their effects on wound healing were investigated. T. versicolor chitosan/PVA nanofibers with a ratio of 25:75, a feed rate of 0.6 mL/min, and a voltage of 20 kV were prepared. SEM images showed that the nanofibers were 276 nm in diameter; the nanofibers were uniform and had no beads. Bacterial growth inhibition for T. versicolor chitosan/PVA nanofibers was 57.5 % and 93 % against E. coli and S. aureus, respectively. Animal experiments evaluating the efficacy of nanofibers revealed that T. versicolor chitosan/PVA nanofibers had wound healing rate of 95 %. T. versicolor chitosan/PVA nanofibers allow fibroblast cells to adhere and grow by facilitating the exchange of moisture and oxygen and accelerating the wound healing process. T. versicolor chitosan/PVA nanofibers have good potential for use as wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: A review. J Pharm Sci 97:2892–2923

    Article  CAS  PubMed  Google Scholar 

  2. Schultz GS, Barillo DJ, Mozingo DW, Chin GA (2004) Wound bed preparation and a brief history of TIME. Int Wound J 1:19–32

    Article  PubMed  PubMed Central  Google Scholar 

  3. Muñoz G, Valencia C, Valderruten N, Ruiz-Durántez E, Zuluaga F (2015) Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine. React Funct Polym 91:1–10

    Article  CAS  Google Scholar 

  4. Mahdavi H, Taghizadeh S, Mivehchi H, Ahmad KBF (2006) The effect of chitosan molecular weight on the rate of drug release of prednisolone sodium phosphate. From chitosan microspheres prepared by spray dryer

  5. Eldin MM, Hashem A, Omer A, Tamer T (2015) Wound dressing membranes based on chitosan: Preparation, characterization and biomedical evaluation. J Adv Res 3:908–922

    CAS  Google Scholar 

  6. Pendekal MS, Tegginamat PK (2012) Development and characterization of chitosan-polycarbophil interpolyelectrolyte complex-based 5-fluorouracil formulations for buccal, vaginal and rectal application. DARU J Pharm Sci 20:67

    Article  CAS  Google Scholar 

  7. Augustine R, Rehman SRU, Ahmed R, Zahid AA, Sharifi M, Falahati M, Hasan A (2020) Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 156:153–170

    Article  CAS  PubMed  Google Scholar 

  8. Paipitak K, Pornpra T, Mongkontalang P, Techitdheer W, Pecharapa W (2011) Characterization of PVA-chitosan nanofibers prepared by electrospinning. Procedia Eng 8:101–105

    Article  CAS  Google Scholar 

  9. Koosha M, Mirzadeh H (2015) Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J Biomed Mater Res A 103:3081–3093

    Article  CAS  PubMed  Google Scholar 

  10. Tajdini F, Amini MA, Nafissi-Varcheh N, Faramarzi MA (2010) Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. Int J Biol Macromol 47:180–183

    Article  CAS  PubMed  Google Scholar 

  11. Chien R-C, Yen M-T, Mau J-L (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym 138:259–264

    Article  CAS  PubMed  Google Scholar 

  12. Saikia C, Gogoi P, Maji T (2015) Chitosan: A promising biopolymer in drug delivery applications. J Mol Genet Med S 4:899–910

    Google Scholar 

  13. Dhillon GS, Kaur S, Brar SK, Verma M (2013) Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol 33:379–403

    Article  CAS  PubMed  Google Scholar 

  14. Nawawi WM, Jones M, Murphy RJ, Lee K-Y, Kontturi E, Bismarck A (2019) Nanomaterials derived from fungal sources—is it the new hype? Biomacromolecules 21:30–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yen M-T, Mau J-L (2007) Physico-chemical characterization of fungal chitosan from shiitake stipes. LWT-FOOD SCI TECHNOL 40:472–479

    Article  CAS  Google Scholar 

  16. Alvandi H, Ghahremani M, Hatamian-Zarmi A, Ebrahimi Hosseinzadeh B, Mokhtari-Hosseini ZB, Jafari Farjam SN (2020) Optimization of Soy-based Media for the Production of Biologically Active Exopolysaccharides by Medicinal Mushroom Trametes versicolor. Appl Food Biotechnol 7:251–261

    CAS  Google Scholar 

  17. Yasrebi N, Hatamian Zarmi AS, Larypoor M (2020) Optimization of Chitosan Production from Iranian Medicinal Fungus Trametes-Versicolor by Taguchi Method and Evaluation of Antibacterial Properties. Iran J Med Microbiol 14:186–200

    Article  Google Scholar 

  18. Lv SH (2016) High-performance superplasticizer based on chitosan. In Biopolymers and biotech admixtures for eco-efficient construction materials. Elsevier, pp 131–150

  19. Safaee-Ardakani MR, Hatamian-Zarmi A, Sadat SM, Mokhtari-Hosseini ZB, Ebrahimi-Hosseinzadeh B, Rashidiani J, Kooshki H (2019) Electrospun Schizophyllan/polyvinyl alcohol blend nanofibrous scaffold as potential wound healing. Int J Biol Macromol 127:27–38

    Article  CAS  PubMed  Google Scholar 

  20. Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178

    Article  CAS  PubMed  Google Scholar 

  21. Abdel-Mohsen A, Jancar J, Massoud D, Fohlerova Z, Elhadidy H, Spotz Z, Hebeish A (2016) Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int J Pharm 510:86–99

    Article  CAS  PubMed  Google Scholar 

  22. Zarei M, Samimi A, Khorram M, Abdi MM, Golestaneh SI (2021) Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biol Macromol 168:175–186

    Article  CAS  PubMed  Google Scholar 

  23. Vega-Cázarez CA, Sánchez-Machado DI, López-Cervantes J (2018) Overview of electrospinned chitosan nanofiber composites for wound dressings. Chitin-Chitosan-Myriad Functionalities Science and Technology. 157–81

  24. Abasian P, Radmansouri M, Jouybari MH, Ghasemi MV, Mohammadi A, Irani M, Jazi FS (2019) Incorporation of magnetic NaX zeolite/DOX into the PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma cells death in vitro. Int J Biol Macromol 121:398–406

    Article  CAS  PubMed  Google Scholar 

  25. Kumar HN, Prabhakar M, Prasad CV, Rao KM, Reddy TAK, Rao KC, Subha M (2010) Compatibility studies of chitosan/PVA blend in 2 % aqueous acetic acid solution at 30 C. Carbohydr Polym 82:251–255

    Article  CAS  Google Scholar 

  26. Talebi A, Labbaf S, Karimzadeh F (2020) Polycaprolactone-chitosan‐polypyrrole conductive biocomposite nanofibrous scaffold for biomedical applications. Polym Compos 41:645–652

    Article  CAS  Google Scholar 

  27. Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM (2014) Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocoll 35:463–470

    Article  CAS  Google Scholar 

  28. Mokhtari-Hosseini Z-B, Hatamian-Zarmi A, Mohammadnejad J, Ebrahimi-Hosseinzadeh B (2018) Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum: Optimization and characterization. Prep Biochem Biotechnol 48:662–670

    Article  CAS  PubMed  Google Scholar 

  29. Amjadi S, Nazari M, Alizadeh SA, Hamishehkar H (2020) Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation. Meat Sci 167:108161

    Article  CAS  PubMed  Google Scholar 

  30. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12:735

    Article  CAS  PubMed Central  Google Scholar 

  31. Bakhsheshi-Rad HR, Hadisi Z, Ismail AF, Aziz M, Akbari M, Berto F, Chen XB (2020) In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym Test 82:106298

    Article  CAS  Google Scholar 

  32. Tohidi S, A., Ghaee A, Barzin J (2016) Preparation and characterization of poly(lactic-co-glycolic acid)/chitosan electrospun membrane containing amoxicillin-loaded halloysite nanoclay. Polym Adv Technol 27(8) 1020-1028. https://doi.org/10.1002/pat.3764

    Article  CAS  Google Scholar 

  33. Adeli H, Khorasani MT, Parvazinia M (2019) Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol 122:238–254

    Article  CAS  PubMed  Google Scholar 

  34. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydr Polym 102:884–892

    Article  CAS  PubMed  Google Scholar 

  35. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Opanasopit P (2014) Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. Int Wound J 11:215–222

    Article  PubMed  Google Scholar 

  36. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  37. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, Ferron SR, Herault Y, Pavlovic G, Ferguson-Smith AC, Watt FM (2013) Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504:277–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V (2019) Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International journal of molecular sciences 20:5889

    Article  CAS  PubMed Central  Google Scholar 

  39. Kamiyama M, Horiuchi M, Umano K, Kondo K, Otsuka Y, Shibamoto T (2013) Antioxidant/anti-inflammatory activities and chemical composition of extracts from the mushroom Trametes versicolor. International Journal of Nutrition Food Sciences 2:85–91

    Article  CAS  Google Scholar 

  40. Alhosseini SN, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, Kargozar S, Jalali N (2012) Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomedicine INT J NANOMED 7:25

    CAS  Google Scholar 

  41. Zhao R, Li X, Sun B, Zhang Y, Zhang D, Tang Z, Chen X, Wang C (2014) Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromol 68:92–97

    Article  CAS  PubMed  Google Scholar 

  42. Zeynali M, Hatamian-Zarmi A, Larypoor M (2019) Evaluation of Chitin-Glucan Complex Production in Submerged Culture of Medicinal Mushroom of Schizophilum commune: Optimization and Growth Kinetic. Iran J Med Microbiol 13:406–424

    Article  Google Scholar 

  43. Safaee-Ardakani MR, Hatamian-Zarmi A, Sadat SM, Mokhtari-Hosseini ZB, Ebrahimi-Hosseinzadeh B, Kooshki H, Rashidiani J (2019) In situ Preparation of PVA/Schizophyllan-AgNPs Nanofiber as Potential of Wound Healing: Characterization and Cytotoxicity. FIBER POLYM 20:2493–2502

    Article  CAS  Google Scholar 

  44. Su CH, Liu SH, Yu SY, Hsieh YL, Ho HO, Hu CH, Sheu MT (2005) Development of fungal mycelia as a skin substitute: characterization of keratinocyte proliferation and matrix metalloproteinase expression during improvement in the wound-healing process. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 72:220–7

  45. Naeimi A, Payandeh M, Ghara AR, Ghadi FE (2020) In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr Polym 240:116315

    Article  CAS  PubMed  Google Scholar 

  46. Yen M-T, Tseng Y-H, Li R-C, Mau J-L (2007) Antioxidant properties of fungal chitosan from shiitake stipes. LWT-FOOD SCI TECHNOL 40:255–261

    Article  CAS  Google Scholar 

  47. Fitzmaurice S, Sivamani RK, Isseroff RR (2011) Antioxidant therapies for wound healing: A clinical guide to currently commercially available products. Skin pharmacology physiology 24:113–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all people, who helped us during the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashrafalsadat Hatamian Zarmi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasrebi, N., Zarmi, A.H., Larypoor, M. et al. In vivo and in vitro evaluation of the wound healing properties of chitosan extracted from Trametes versicolor. J Polym Res 28, 399 (2021). https://doi.org/10.1007/s10965-021-02773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02773-x

Keywords

Navigation