Skip to main content

Advertisement

Log in

Blending of cyclic carbonate based on soybean oil and glycerol: a non-isocyanate approach towards the synthesis of polyurethane with high performance

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work demonstrates the synthesis of bio-based polyurethane from soybean oil and glycerol derived highly branched structure via non-isocyanate route. The soybean oil based cyclic carbonates were synthesized by coupling of CO2 with epoxidized soybean oil. In the second step, glycerol derived highly branched cyclic carbonate was synthesized from diglycidal ether of bisphenol A (DGEBA) and CO2. The structure of prepared monomer was confirmed from FT-IR, 1H and 13C NMR spectra. Then a series of non-isocyanate polyurethanes (NIPUs) were synthesized. They exhibited satisfactory mechanical properties (Tensile strength = 10.1 MPa) and thermal stability (283 °C). These results indicate the prospect of this eco-friendly approach for preparing renewable NIPU without the use of isocyanate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: Furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669

    Article  CAS  PubMed  Google Scholar 

  2. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: Recent advances. Prog Polym Sci 48:1–39

    Article  CAS  Google Scholar 

  3. Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362

    Article  CAS  PubMed  Google Scholar 

  4. Gandini A (2008) Polymers from renewable resources: A challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  5. Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802

    Article  CAS  PubMed  Google Scholar 

  6. Sawpan MA (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res 25:184

    Article  Google Scholar 

  7. Montero de Espinosa L, Meier MAR (2011) Plant oils: The perfect renewable resource for polymer science?! Eur Polym J 47(5):837–852

    Article  CAS  Google Scholar 

  8. Pelufo DI, Neto SC, Gobbo RCB, dos Santos AJ, Terezo AJ, de Siqueira AB (2020) Kinetic study of the thermal decomposition of castor oil based polyurethane. J Polym Res 27:143

    Article  CAS  Google Scholar 

  9. Gogoi P, Boruah M, Sharma S (2015) Dolui SK (2015) Blends of epoxidized alkyd resins based on jatropha oil and the epoxidized oil cured with aqueous citric acid solution: A Green technology approach. ACS Sustain Chem Eng 3(2):261–268

    Article  CAS  Google Scholar 

  10. Zhu J, Chandrashekhara K, Flanigan V, Kapila S (2004) Curing and mechanical characterization of a soy-based epoxy resin system. J Appl Polym Sci 91:3513–3518

    Article  CAS  Google Scholar 

  11. Guo A, Javni I, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473

    Article  CAS  Google Scholar 

  12. Król P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mat Sci 52:915–1015

    Article  Google Scholar 

  13. Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: A Review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90

    Article  CAS  PubMed  Google Scholar 

  14. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418

    Article  CAS  Google Scholar 

  15. Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuator A Phys 64:77–85

    Article  CAS  Google Scholar 

  16. Carré C, Bonnet L, Avérous L (2014) Original biobased nonisocyanate polyurethanes: solvent-and catalyst-free synthesis, thermal properties and rheological behaviour. RSC Adv 4:54018–54025

    Article  Google Scholar 

  17. Carré C, Ecochard Y, Caillol S, Averous L (2019) From the synthesis of biobased cyclic carbonate to polyhydroxyurethanes: A promising route towards renewable NonIsocyanate Polyurethanes. Chem Sus Chem 12:3410–3430

    Article  Google Scholar 

  18. Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552

    Article  CAS  Google Scholar 

  19. Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115:12407–12439

    Article  CAS  PubMed  Google Scholar 

  20. Furtwengler P, Avérous L (2018) From D-sorbitol to five-membered bis (cyclo-carbonate) as a platform molecule for the synthesis of different original biobased chemicals and polymers. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  21. North M, Pasquale R (2009) Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem Int Ed 48:2946–2948

    Article  CAS  Google Scholar 

  22. Meléndez J, North M, Villuendas P (2009) One-component catalysts for cyclic carbonate synthesis. Chem Comm 18:2577

    Article  Google Scholar 

  23. Meléndez J, North M, Villuendas P, Young C (2011) One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton Trans 40:3885–3902

    Article  PubMed  Google Scholar 

  24. Tamami B, Sohn S, Wilkes GL (2004) Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J Appl Polym Sci 92:883–891

    Article  CAS  Google Scholar 

  25. Poussard L, Mariage J, Grignard B, Detrembleur C, Jérôme C, Calberg C, Heinrichs B, De Winter J, Gerbaux P, Raquez JM, Bonnaud L, Dubois P (2016) Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics. Macromolecules 49:2162–2171

    Article  CAS  Google Scholar 

  26. Foltran S, Maisonneuve L, Cloutet E, Gadenne B, Alfos C, Tassaing T, Cramail H (2012) Solubility in CO2 and swelling studies by in situ IR spectroscopy of vegetable-based epoxidized oils as polyurethane precursors. Polym Chem 3:525–532

    Article  CAS  Google Scholar 

  27. Malik M, Kaur R (2018) Synthesis of NIPU by the carbonation of canola oil using highly efficient 5, 10, 15-tris (pentafluorophenyl) corrolato-manganese (III) complex as novel catalyst. Polym Adv Technol 29:1078–1085

    Article  CAS  Google Scholar 

  28. Javni I, Hong DP, Petrović ZS (2008) Soy-based polyurethanes by nonisocyanate route. J Appl Polym Sci 108:3867–3875

    Article  CAS  Google Scholar 

  29. Samanta S, Selvakumar S, Bahr J, Wickramaratne DS, Sibi M, Chisholm BJ (2016) Synthesis and characterization of polyurethane networks derived from soybean-oil-based cyclic carbonates and bioderivable diamines. ACS Sustain Chem Eng 4:6551–6561

    Article  CAS  Google Scholar 

  30. Kathalewar M, Sabnis A, D’Mello D (2014) Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur Polym J 57:99–108

    Article  CAS  Google Scholar 

  31. Janvier M, Ducrot PH, Allais F (2017) Isocyanate-free synthesis and characterization of renewable poly(hydroxy)urethanes from syringaresinol. ACS Sustain Chem Eng 5:8648–8656

    Article  CAS  Google Scholar 

  32. Ke J, Li X, Wang F, Jiang S, Kang M, Wang J, Li Q, Wang Z (2017) Non-isocyanate polyurethane/epoxy hybrid materials with different and controlled architectures prepared from a CO2-sourced monomer and epoxy via an environmentally-friendly route. RSC Adv 7:28841–28852

    Article  CAS  Google Scholar 

  33. Wazarkar K, Kathalewar M, Sabnis A (2016) Development of epoxy-urethane hybrid coatings via non-isocyanate route. Eur Polym J 84:812–827

    Article  CAS  Google Scholar 

  34. Caminade AM, Yan D, Smith DK (2015) Dendrimers and hyperbranched polymers. Chem Soc Rev 44:3870–3873

    Article  CAS  PubMed  Google Scholar 

  35. Gao C, Yan D (2004) Hyperbranched polymers: From synthesis to applications. Prog Polym Sci 29:183–275

    Article  CAS  Google Scholar 

  36. Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev 109(11):5924–5973

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H, Patel A, Gaharwar AK, Mihaila SM, Iviglia G, Mukundan S, Bae H, Yang H, Khademhosseini A (2013) Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromol 14:1299–1310

    Article  CAS  Google Scholar 

  38. De B, Gupta K, Mandal M, Karak N (2014) Biodegradable hyperbranched epoxy from castor oil-based hyperbranched polyester polyol. ACS Sustain Chem Eng 2(3):445–453

    Article  CAS  Google Scholar 

  39. De B, Karak N (2015) Ultralow dielectric, high performing hyperbranched epoxy thermosets: synthesis, characterization and property evaluation. RSC Adv 5(44):35080–35088

    Article  CAS  Google Scholar 

  40. Jena KK, Narayan R, Raju KVSN (2010) Hyperbranched polyester based on the core + AB2 approach: Synthesis and structural investigation. J Appl Polym Sci 118:280–290

    Article  CAS  Google Scholar 

  41. Dhevi DM, Jaisankar SN, Pathak M (2013) Effect of new hyperbranched polyester of varying generations on toughening of epoxy resin through interpenetrating polymer networks using urethane linkages. Eur Polym J 49:3561–3572

    Article  Google Scholar 

Download references

Acknowledgments

S. Doley gratefully acknowledges the University Grant Commission, India for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Dolui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doley, S., Bora, A., Saikia, P. et al. Blending of cyclic carbonate based on soybean oil and glycerol: a non-isocyanate approach towards the synthesis of polyurethane with high performance. J Polym Res 28, 146 (2021). https://doi.org/10.1007/s10965-021-02485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02485-2

Keywords

Navigation