Skip to main content

Advertisement

Log in

Kinetic study of the thermal decomposition of castor oil based polyurethane

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyurethane is a class of polymer that presents as main feature the versatility in its physical and chemical properties. Knowing the kinetic parameters of the thermal degradation of these materials collaborates with the development of new applications. Therefore, this work had as objective to study of the kinetic parameters of the thermal decomposition of vegetable oil-based polyurethane (castor oil), through non - isothermal thermogravimetric method. The thermogravimetric curves of the samples showed two decomposition steps, and the kinetic parameters of each step were determined using the Flynn-Wall-Ozawa (FWO) method. The first stage of thermal decomposition presents characteristics of first-order reactions, the second stage of decomposition presented a behavior similar to that of the first stage until α equal to 0.4, in the conversion range between 0.4 and 0.9 a concave profile was observed, characteristic of complex processes, indicating parallel reactions and minimum lifetime of 1650 years old.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications-a review. RSC Adv 6:114453–114482. https://doi.org/10.1039/c6ra14525f

    Article  CAS  Google Scholar 

  2. Rezende CMF, Silva MC, Laranjeira MG, Borges AP (2001) Estudo experimental do poliuretano de óleo de mamona (Ricinus communis) como substituto parcial do tendão calcâneo comum em coelhos (Oryctolagus cuniculus). Arq Bras Med Veterinária e Zootec 53:695–700. https://doi.org/10.1590/S0102-09352001000600015

    Article  Google Scholar 

  3. Sawpan MA (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res 25. https://doi.org/10.1007/s10965-018-1578-3

  4. Wang C, Zheng Y, Xie Y, Qiao K, Sun Y, Yue L (2015) Synthesis of bio-castor oil polyurethane flexible foams and the influence of biotic component on their performance. J Polym Res 22. https://doi.org/10.1007/s10965-015-0782-7

  5. Cangemi JM, dos Santos AM, Neto CS, Chierice GO (2008) Biodegradation of polyurethane derived from castor oil. Polímeros 18:201–206. https://doi.org/10.1590/S0104-14282008000300004

    Article  CAS  Google Scholar 

  6. Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO (2010) Characterization of polyurethane resins by FTIR, TGA, and XRD. J Appl Polym Sci 115:263–268. https://doi.org/10.1002/app.31096

    Article  CAS  Google Scholar 

  7. Carvalho JE de (2014) Caracterização do poliuretano derivado de óleo vegetal para confecção de dispositivo de assistência ventricular. 119. https://doi.org/10.11606/D.18.2014.tde-25092014-181354

  8. Flynn J, Wall L (1966) General trement of the therogravimetry of polymers. J Res Natl Bur Stand (1934) 70A:487–523

  9. Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal 2:301–324. https://doi.org/10.1007/BF01911411

    Article  CAS  Google Scholar 

  10. Vyazovkin S (2010) Thermal analysis. Anal Chem 82:4936–4949. https://doi.org/10.1021/ac100859s

    Article  CAS  PubMed  Google Scholar 

  11. Doyle CD (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6:639–642. https://doi.org/10.1002/app.1962.070062406

    Article  CAS  Google Scholar 

  12. Ozawa T (1965) A new method of analyzing Thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/bcsj.38.1881

    Article  CAS  Google Scholar 

  13. Vyazovkin S, Chrissafis K, Di Lorenzo ML, et al (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23. https://doi.org/10.1016/j.tca.2014.05.036

  14. Al-Salem SM, Bumajdad A, Khan AR, et al (2018) Non-isothermal degradation kinetics of virgin linear low density polyethylene (LLDPE) and biodegradable polymer blends. J Polym Res 25. https://doi.org/10.1007/s10965-018-1513-7

  15. Toop DJ (1971) Theory of Life Testing and Use of Thermogravimetric Analysis to Predict the Thermal Life of Wire Enamels. IEEE Trans Electr Insul EI-6:2–14. https://doi.org/10.1109/TEI.1971.299128

  16. Carvalho JE de, Claro Neto S, Chierice GO (2014) Caracterização térmica do poliuretano derivado de óleo vegetal utilizado para confecção de dispositivo de assistência ventricular. Brazilian J Therm Anal 3:16. https://doi.org/10.18362/bjta.v3i1-2.21

  17. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002

  18. Vyazovkin S (2015) Isoconversional kinetics of thermally stimulated processes, 1st ed. Springer International Publishing, New York, p 239

  19. Vyazovkin S, Lesnikovich AI (1990) An approach to the solution of the inverse kinetic problem in the case of complex processes. Part 1. Methods employing a series of thermoanalytical curves. Thermochim Acta 165:273–280. https://doi.org/10.1016/0040-6031(90)80227-P

  20. Centro de Previsão de Tempo e Estudos Climáticos - INPE. http://bancodedados.cptec.inpe.br/. Accessed 6 Nov 2019

Download references

Acknowledgements

CNPq, CAPES, FAPEMAT, and Company Shimadzu in the person of Mr. Antonio Marcos C. D. Beltrão, for assigning the kinetic software for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ippolito Pelufo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelufo, D.I., Neto, S.C., Gobbo, R.C.B. et al. Kinetic study of the thermal decomposition of castor oil based polyurethane. J Polym Res 27, 143 (2020). https://doi.org/10.1007/s10965-020-02123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02123-3

Keywords

Navigation