Skip to main content
Log in

Chemical modification of neoprene rubber by grafting cardanol, a versatile renewable materials from cashew industry

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to plasticize neoprene rubber (CR), a natural plasticizer,derived from Cashew Nut Shell Liquid (CNSL),was covalently bound to CR at room temperature via click chemistry. That is, the covalent attachment of the cardanol-based internal plasticizer to CR matrix, is descried for the first time. The chemical structure and properties of cardanol-based internal plasticizer and internally plasticized CR materials was characterized by FTIR, dynamic mechanical analysis (DMA), plasticizer migration tests, differential scanning calorimeter (DSC), and gel permeation chromatography (GPC). Results indicated when cardanol was grafted onto CR (CR-CPE), CR-CPE had a lower Tg compared with plain CR. Self-plasticization CR samples showed zero migration in petroleum ether, but 1. 58 mg·mL−1 of cardanol leached from CR/cardanol blend(CR-car) system into petroleum ether. The CR-CPE materials were expected to be commercial application in producing food packing, toys, and medical devices with high requirements in migration resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sampson J, Korte D (2011) DEHP-plasticised PVC: relevance to blood services*. Transfus. Med. 21:73–83

    Article  CAS  PubMed  Google Scholar 

  2. Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 409:3309–3324

    Article  CAS  PubMed  Google Scholar 

  3. Hines CJ, Hope NB, Deddens JA, Silva MJ, Calafat AM (2012) Occupational exposure to diisononyl phthalate (DiNP) in polyvinyl chloride processing operations. Int. Arch. Occup. Environ. Health 85:317–325

    Article  CAS  PubMed  Google Scholar 

  4. Chiellini F, Ferri M, Morelli A, Dipaola L, Latini G (2013) Perspectives on alternatives to phthalate plasticized poly(vinyl chloride) in medical devices applications. Prog. Polym. Sci. 38:1067–1088

    Article  CAS  Google Scholar 

  5. Chiellini F, Ferri M, Latini G (2011). Int. J. Pharm. 409:7

    Article  Google Scholar 

  6. Li Z, Liu N, Yao Y, Chen S, Wang H, Wang H (2015). RSC Adv. 5:901

    Article  CAS  Google Scholar 

  7. Rahman M, Brazel CS (2004). Prog. Polym. Sci. 29:1223

    Article  CAS  Google Scholar 

  8. Panda B, Parihar AS, Mallick S (2014). Int. J. Biol. Macromol. 67:295

    Article  CAS  PubMed  Google Scholar 

  9. Niazi MBK, Zijlstra M, Broekhuis AA (2013). Carbohydr. Polym. 97:571

    Article  CAS  PubMed  Google Scholar 

  10. Garg B, Bisht T, Ling YC (2014) Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers. RSC Adv. 4:57297–57307

    Article  CAS  Google Scholar 

  11. Yang D, Peng X, Zhong L, Cao X, Chen W, Zhang X (2014). Carbohydr. Polym. 103:198

    Article  CAS  PubMed  Google Scholar 

  12. Fenollar O, García D, Sánchez L, López J, Balart R (2009) Optimization of the curing conditions of PVC plastisols based on the use of an epoxidized fatty acid ester plasticizer. Eur. Polym. J. 45:2674–2684

    Article  CAS  Google Scholar 

  13. Salahi A, Mohammadi T, Nikbakht M, Golshenas M, Noshadi I, Desalin (2012). Water Treat 48:27

    Article  CAS  Google Scholar 

  14. de Oliveira PC, de Oliveira AM, Garcia A, de Souza Barboza JC, de Carvalho Zavaglia CA, dos Santos AM (2005). Eur. Polym. J. 41:1883

    Article  Google Scholar 

  15. Ribeiro FWM, Kotzebue LRV, Oliveira J’s R, Maia FJN, Mazzetto SE, Lomonaco D (2017). J. Therm. Anal. Calorim. 129:281–289

    Article  CAS  Google Scholar 

  16. Ma Y, Hu H, Northwood D, Nie X (2007) Optimization of the electrolytic plasma oxidation processes for corrosion protection of magnesium alloy AM50 using the Taguchi method. J Mater ProcessTechnol 182:58–64

    Article  CAS  Google Scholar 

  17. Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Pasquali L et al (2004). Polymer 45:805–813

    Article  CAS  Google Scholar 

  18. Romero Tendero PM, Jimenez A, Greco A, Maffezzoli A (2006) Viscoelastic and thermal characterization of crosslinked PVC. Eur. Polym. J. 42:961–969

    Article  CAS  Google Scholar 

  19. Rosales-Jasso A, Arias G, Rodriguez OS, Allen NS (2000). Polym. Degrad. Stab. 68:253

    Article  CAS  Google Scholar 

  20. Yu Q, Zhu S, Zhou W (1998). J. Polym. Sci. A Polym. Chem. 36:851–860

    Article  CAS  Google Scholar 

  21. Sunny MC, Ramesh P, George KE (2006). J. Appl. Polym. Sci. 102:4720

    Article  CAS  Google Scholar 

  22. Jie C, Liu Z, Nie X et al (2018). J. Polym. Res. 25:128

    Article  Google Scholar 

  23. He Z, Li D, Hensley DK, Rondinone AJ, Chen J (2013) Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends. Appl. Phys. Lett. 103:113301

    Article  Google Scholar 

  24. He Z, Chen J, Li D (2019). Soft Matter 15:5790

    Article  CAS  PubMed  Google Scholar 

  25. Bi S, Li Y, He Z, Ouyang Z, Guo Q, Jiang C (2019) Self-assembly diketopyrrolopyrrole-based materials and polymer blend with enhanced crystal alignment and property for organic field-effect transistors. Org. Electron. 65:96–99

    Article  CAS  Google Scholar 

  26. He Z, Zhang Z, Asare-Yeboah K, Bi S (2019). J. Mater. Sci. Mater. Electron. 30(15):14335

    Article  CAS  Google Scholar 

  27. Thirukumaran P, Parveen AS, Sarojadevi M (2014). ACS Sustain. Chem. Eng. 2:2790

    Article  CAS  Google Scholar 

  28. Bi S, He Z, Li Q, Yan Y, Asare-Yeboah K et al (2019). Phys. Chem. Chem. Phys. 21(5):2450

    Article  Google Scholar 

  29. Momin MA, Hossain KS, Bhuiyan AH (2019). J. Polym. Res. 26(3):83

    Article  Google Scholar 

  30. Rajesh K, Crasta V, Rithin Kumar NB, Shetty G, Rekha PD (2019). J. Polym. Res. 26(4):1

    Article  CAS  Google Scholar 

  31. Wang C, Wang TM, Wang QH (2019). J. Polym. Res. 26(1):1

    Article  Google Scholar 

  32. Ayat M, Rahmouni A, Belbachir M, Bensaada N, Baghdadli MC, Meghabar R (2019). J. Polym. Res. 26(9):1

    Article  Google Scholar 

  33. He Z, Zhang Z, Bi S (2019). J. Polym. Res. 26(7):173

    Article  Google Scholar 

  34. Xu GM, Ji YB, Yang Z, Tan H (2012) Influence of Structure and Property of Plasticizers on Viscosity and Aging Process of PVC Plastisols. Appl. Mech. Mater. 161:15–20

    Article  CAS  Google Scholar 

  35. Yang P, Yan J, Sun H, Fan H, Chen Y, Wang F, Shi B (2015). RSC Adv. 5:16980

    Article  CAS  Google Scholar 

  36. Natarajan M, Murugavel SC (2017). Polym. Bull. 74:3319

    Article  CAS  Google Scholar 

  37. Greco A (2010). Polym. Degrad. Stab. 95(11):2169

    Article  CAS  Google Scholar 

  38. Mohapatra S, Nando GB (2014). RSC Adv. 4:15406

    Article  CAS  Google Scholar 

  39. Zhang W, Jiang N, Zhang T (2019) Self-plasticization of neoprene rubber via click chemistry from environmentally sustainable cardanol. J. Elastom. Plast. https://doi.org/10.1177/0095244319869768,009524431986976

  40. Lakshmi S, Jayakrishnan A (1998). Polymer 39:151

    Article  CAS  Google Scholar 

  41. Tendero PMR, Jimenez A, Greco A, Maffezzoli A (2006). Eur. Polym. J. 42(4):961

    Article  Google Scholar 

Download references

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the Natural Science Foundation of Liaoning Province of China (grant no. 201602597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzheng Zhang.

Ethics declarations

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship,and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, T., Jiang, N. et al. Chemical modification of neoprene rubber by grafting cardanol, a versatile renewable materials from cashew industry. J Polym Res 27, 163 (2020). https://doi.org/10.1007/s10965-020-02122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02122-4

Keywords

Navigation