Skip to main content

Advertisement

Log in

Synthesis, characterization, and morphology study of coco peat-grafted-poly(acrylic acid)/NPK slow release fertilizer hydrogel

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Coco peat-grafted-poly(acrylic acid)/NPK [CP-g-P(AAc)/NPK] slow release fertilizer hydrogel (SRFH) was prepared by grafting coco peat fiber onto acrylic acid in the presence of NPK 15–15-15 fertilizer using in-situ solution polymerization technique. Commercial super absorbance polymer (CSAP) was used to compare the properties of SRFH. The hydrogels were characterized by fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and ultraviolet-visible spectroscopy (UV-Vis). The grafting reaction is approved by the disappearance of peak at 973 cm−1 of FTIR spectrum. DSC results revealed that SRFH had high glass transition temperature, Tg compared to CSAP. SEM images showed that SRFH had low porosity and compact structure than CSAP. Fertilizer release study showed that the amount of nutrient release is greatly improved by SRFH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  2. Seetapan N, Wongsawaeng J, Kiatkamjornwong S (2011) Gel strength and swelling of acrylamide-protic acid superabsorbent copolymers. Polym Adv Technol 22(12):1685–1695

    Article  CAS  Google Scholar 

  3. Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102(1):3–12

    Article  CAS  Google Scholar 

  4. Ramezani M, Jafari M, Tavili A, Javadi SA, Amiri QZ (2013) The effect of calcium and sodium chloride levels on the dehydration power of hydrophilic polymer. J Food Agric Environ 11:896–898

    CAS  Google Scholar 

  5. Gupta NV, Shivakumar H (2012) Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iranian journal of pharmaceutical research: IJPR 11(2):481

    CAS  PubMed  Google Scholar 

  6. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385

    Article  CAS  Google Scholar 

  7. Laftah WA (2013) Preparation and characterization of biodegradable Polyacrylic acid based hydrogel for agricultural application. Universiti Teknologi Malaysia

  8. Liu Y, Wang W, Wang A Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination 259(1–3):258–264

    Article  CAS  Google Scholar 

  9. Miao Q, Xu D, Wang Z, Xu L, Wang T, Wu Y, Lovejoy DB, Kalinowski DS, Richardson DR, Nie G, Zhao Y Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials 31(28):7364–7375

    Article  CAS  Google Scholar 

  10. Kabiri K, Omidian H, Zohuriaan-Mehr M, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289

    Article  CAS  Google Scholar 

  11. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21(2):344

    Article  Google Scholar 

  12. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  13. Saba N, Jawaid M, Alothman OY, Paridah M (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159

    Article  CAS  Google Scholar 

  14. Keerthika B, Umayavalli M, Jeyalalitha T, Krishnaveni N (2016) Coconut shell powder as cost effective filler in copolymer of acrylonitrile and butadiene rubber. Ecotoxicol Environ Saf 130:1–3

    Article  CAS  Google Scholar 

  15. Thakur K, Kalia S, Kaith B, Pathania D, Kumar A (2015) Surface functionalization of coconut fibers by enzymatic biografting of syringaldehyde for the development of biocomposites. RSC Adv 5(94):76844–76851

    Article  CAS  Google Scholar 

  16. Wang Z, Barford JP, Hui CW, McKay G (2015) Kinetic and equilibrium studies of hydrophilic and hydrophobic rice husk cellulosic fibers used as oil spill sorbents. Chem Eng J 281:961–969

    Article  CAS  Google Scholar 

  17. Yang L, Wang Z, Yang L, Li X, Zhang Y, Lu C (2017) Coco peat powder as a source of magnetic sorbent for selective oil–water separation. Ind Crop Prod 101:1–10

    Article  CAS  Google Scholar 

  18. Jin S, Wang Y, He J, Yang Y, Yu X, Yue G (2013) Preparation and properties of a degradable interpenetrating polymer networks based on starch with water retention, amelioration of soil, and slow release of nitrogen and phosphorus fertilizer. J Appl Polym Sci 128(1):407–415

    Article  CAS  Google Scholar 

  19. Liang R, Yuan H, Xi G, Zhou Q (2009) Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydrate Polymers:1–7. doi:10.1016

  20. G-z Z, Y-q L, Tian Y, Y-y S, Cao Y (2010) Preparation and properties of macromelecular slow-release fertilizer containing nitrogen, phosphorus and potassium. J Polym Res 17(1):119–125

    Article  Google Scholar 

  21. El-Rehim HAA, Hegazy E-SA, El-Mohdy HLA (2004) Radiation synthesis of hydrogels to enhance Sandy soils water retention and increase plant performance. J Appl Polym Sci 93:1360–1371

    Article  Google Scholar 

  22. Shaviv A (2000) Advances in controlled release of fertilizers. Adv Agron 71:79

    Google Scholar 

  23. Li X, Li Q, Su Y, Yue Q, Gao B, Su Y (2015) A novel wheat straw cellulose-based semi-IPNs superabsorbent with integration of water-retaining and controlled-release fertilizers. J Taiwan Inst Chem Eng 55:170–179

    Article  CAS  Google Scholar 

  24. Laftah WA, Hashim S (2012) Synthesis, optimization, characterization and agricultural field evaluation of polymer hydrogel composites based on poly acrylic acid and micro-fiber of oil palm empty fruit bunch. Int J Plast Technol 16(2):166–181

    Article  CAS  Google Scholar 

  25. Zhong K, Lin Z-T, Zheng X-L, Jiang G-B, Fang Y-S, Mao X-Y, Liao Z-W (2013) Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydr Polym 92(2):1367–1376

    Article  CAS  Google Scholar 

  26. Ramli RA, Hashim S, Laftah WA (2013) Synthesis, characterization, and morphology study of poly (acrylamide-co-acrylic acid)-grafted-poly (styrene-co-methyl methacrylate)“raspberry”-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization. J Colloid Interface Sci 391:86–94

    Article  CAS  Google Scholar 

  27. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Fourier transform-materials analysis. InTech,

  28. Lim LS, Ahmad I, Lazim M (2015) pH sensitive hydrogel based on poly (acrylic acid) and cellulose nanocrystals. Sains Malaysiana 44(6):779–785

    Article  CAS  Google Scholar 

  29. Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885

    Article  CAS  Google Scholar 

  30. Laftah W, Hashim S (2014) Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber. Chem Pap 68(6):798–808

    Article  CAS  Google Scholar 

  31. Laftah WA, Hashim S (2014) The influence of plant natural fibers on swelling behavior of polymer hydrogels. J Compos Mater 48(5):555–569

    Article  CAS  Google Scholar 

  32. Essawy HA, Ghazy MB, El-Hai FA, Mohamed MF (2016) Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int J Biol Macromol 89:144–151

    Article  CAS  Google Scholar 

  33. Xiao X, Yu L, Xie F, Bao X, Liu H, Ji Z, Chen L (2017) One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chem Eng J 309:607–616

    Article  CAS  Google Scholar 

  34. Iovino R, Zullo R, Rao M, Cassar L, Gianfreda L (2008) Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab 93(1):147–157

    Article  CAS  Google Scholar 

  35. Laftah WA, Hashim S Preparation and possible agricultural applications of polymer hydrogel composite as soil conditioner. In: Advanced Materials Research, 2013. Trans Tech Publ, pp 6–10

  36. Ni B, Liu M, Lü S (2009) Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem Eng J 155(3):892–898

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank to Ministry of Education Malaysia (PRGS/1/2019/TK10/UMP/02/2) and Universiti Malaysia Pahang (RDU190807) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ros Azlinawati Ramli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramli, R.A., Lian, Y.M., Nor, N.M. et al. Synthesis, characterization, and morphology study of coco peat-grafted-poly(acrylic acid)/NPK slow release fertilizer hydrogel. J Polym Res 26, 266 (2019). https://doi.org/10.1007/s10965-019-1952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1952-9

Keywords

Navigation