Skip to main content
Log in

Effects of multiwall carbon nanotubes on the polymerization model of aniline

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, chemical polymerization of aniline and aniline/multi-walled carbon nanotubes (MWCNTs) is investigated, and a modified polymerization model is proposed based on the obtained experimental results. In the experimental section, the variation in temperature of the reaction mixture was measured during the polymerization reaction. According to the obtained thermographs, it was concluded that the polymerization of aniline or aniline/MWCNTs takes place in three different steps. In the first step, some nuclei of phenazine-type trimers are formed for pure aniline while for aniline/MWCNTs, aniline molecules are adsorbed on the nanotubes surfaces. In the second step, cation-radical polymerization occurs at a high speed where there are a significant number of monomers around the growing chains. It is proposed that in the third step a new polymerization reaction begins on the pre-synthesized polymers. For pure PANI, it seems that only oligomers are created in this step while for PANI/MWCNTs, long chain polymers can also grow. Experimental results show that the enthalpy of polymerization reduces while polymerization yield increases with the weight percent of MWCNTs, which can be explained by the new observed polymerization model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wallace GG, Teasdale PR, Spinks GM, Kane-Maguire LA (2008) Conductive electroactive polymers: intelligent polymer systems. CRC press, Florida

    Book  Google Scholar 

  2. Potphode DD, Sivaraman P, Mishra SP, Patri M (2015) Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors. Electrochim Acta 155:402–410

    Article  CAS  Google Scholar 

  3. Ha J-S, Lee J-M, Lee H-R, Huh P, Jo N-J (2015) Polymer Nanocomposite Electrode Consisting of Polyaniline and Modified Multi-Walled Carbon Nanotube for Rechargeable Battery. J Nanosci Nanotechnol 15:8977–8983

    Article  CAS  PubMed  Google Scholar 

  4. Kulkarni MV, Kale BB (2013) Studies of conducting polyaniline (PANI) wrapped-multiwalled carbon nanotubes (MWCNTs) nanocomposite and its application for optical pH sensing. Sensors Actuators B Chem 187:407–4012

    Article  CAS  Google Scholar 

  5. Kar P, Choudhury A (2013) Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sensors Actuators B Chem 183:25–33

    Article  CAS  Google Scholar 

  6. Konwer S, Begum A, Bordoloi S, Boruah R (2017) Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. J Polym Res 24:37–47

    Article  Google Scholar 

  7. Yun J, Kim H-I (2012) Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym Bull 68:561–573

    Article  CAS  Google Scholar 

  8. Jelmy EJ, Ramakrishnan S, Kothurkar NK (2016) EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym Adv Technol 27:1246–1257

    Article  CAS  Google Scholar 

  9. Deshpande P, Vathare S, Vagge S, Tomšík E, Stejskal J (2013) Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations. Chem Pap 67:1072–1078

    CAS  Google Scholar 

  10. Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M (2016) Electrochemical deposition and characterization of polyaniline-graphene nanocomposite films and its corrosion protection properties. J Polym Res 23:91–104

    Article  Google Scholar 

  11. Yun S, Freitas JN, Nogueira AF, Wang Y, Ahmad S, Wang Z-S (2016) Dye-sensitized solar cells employing polymers. Prog Polym Sci 50:1–40

    Article  Google Scholar 

  12. Xiao Y, Lin J-Y, Wu J, Tai S-Y, Yue G, Lin T-W (2013) Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. J Power Sources 233:320–325

    Article  CAS  Google Scholar 

  13. Saranya K, Rameez M, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. Eur Polym J 66:207–227

    Article  CAS  Google Scholar 

  14. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  15. Ćirić-Marjanović G (2013) Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47

    Article  Google Scholar 

  16. Kazum O, Kannan MB (2013) Galvanostatic polymerisation of aniline on steel: Improving the coating performance in chloride-containing environment. Synth Met 180:54–58

    Article  CAS  Google Scholar 

  17. Ding Y, Buyle Padias A, Hall H (1999) Chemical trapping experiments support a cation‐radical mechanism for the oxidative polymerization of aniline. J Polym Sci A 37:2569–2579

    Article  CAS  Google Scholar 

  18. Armes SP, Miller JF (1988) Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate. Synth Met 22:385–393

    Article  CAS  Google Scholar 

  19. Omastová M, Mosnáčková K, Trchová M, Konyushenko EN, Stejskal J, Fedorko P, Prokeš J (2010) Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synth Met 160:701–707

    Article  Google Scholar 

  20. Wang Y, Jing X, Kong J (2007) Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synth Met 157:269–275

    Article  CAS  Google Scholar 

  21. Zhang L, Wan M, Wei Y (2006) Nanoscaled Polyaniline Fibers Prepared by Ferric Chloride as an Oxidant. Macromol Rapid Commun 27:366–371

    Article  CAS  Google Scholar 

  22. Karami H, Jafari S, Goli F (2016). Int J Electrochem Sci 11:3056–3073

    Article  CAS  Google Scholar 

  23. Gupta V, Miura N (2005) Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem Commun 7:995–999

    Article  CAS  Google Scholar 

  24. Sazou D, Kourouzidou M, Pavlidou E (2007) Potentiodynamic and potentiostatic deposition of polyaniline on stainless steel: Electrochemical and structural studies for a potential application to corrosion control. Electrochim Acta 52:4385–4397

    Article  CAS  Google Scholar 

  25. Zotti G, Cattarin S, Comisso N (1988) Cyclic potential sweep electropolymerization of aniline: The role of anions in the polymerization mechanism. J Electroanal Chem Interfacial Electrochem 23:387–396

    Article  Google Scholar 

  26. Zotti G, Cattarin S, Comisso N (1987) Electrodeposition of polythiophene, polypyrrole and polyaniline by the cyclic potential sweep method. J Electroanal Chem Interfacial Electrochem 235:259–273

    Article  CAS  Google Scholar 

  27. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of Conducting Polymers—Persistent Models and New Concepts†. Chem Rev 110:4724–4771

    Article  CAS  PubMed  Google Scholar 

  28. Tzou K, Gregory RV (1992) Kinetic study of the chemical polymerization of aniline in aqueous solutions. Synth Met 47:267–277

    Article  CAS  Google Scholar 

  29. Shim Y-B, Park S-M (1989) Electrochemistry of conductive polymers VII. Autocatalytic rate constant for polyaniline growth. Synth Met 29:169–174

    Article  Google Scholar 

  30. Fu Y, Elsenbaumer RL (1994) Thermochemistry and Kinetics of Chemical Polymerization of Aniline Determined by Solution Calorimetry. Chem Mater 6:671–677

    Article  CAS  Google Scholar 

  31. Cavallo PC, Muñoz DJ, Miras MC, Barbero C, Acevedo DF (2014) Extracting kinetic parameters of aniline polymerization from thermal data of a batch reactor. simulation of the thermal behavior of a reactor. J Appl Polym Sci 131:39409

    Article  Google Scholar 

  32. Mezhuev YO, Korshak YV, Shtil’man MI (2015) A new concept of the kinetics and mechanism of the oxidative polymerization of aromatic amines. Russ J Phys Chem B 9:306–315

    Article  CAS  Google Scholar 

  33. Mezhuev YO, Korshak YV, Shtilman MI, Solov’eva IV (2014) Kinetic analysis of aniline polymerization considering the formation of a charge-transfer complex. Russ J Gen Chem 84:2445–2452

    Article  CAS  Google Scholar 

  34. Mezhuev YO, Korshak YV, Shtil’man MI (2016) Effect of poly(ethylene oxide) on the kinetics of oxidative polymerization of aniline. Russ J Gen Chem 86:2520–2525

    Article  CAS  Google Scholar 

  35. Wei Y, Tang X, Sun Y, Focke WW (1989) A study of the mechanism of aniline polymerization. J Polym Sci A 27:2385–2396

    Article  CAS  Google Scholar 

  36. Mav I, Žigon M (2001). J Polym Sci A 39:2471–2481

    Article  CAS  Google Scholar 

  37. Wei Y, Sun Y, Tang X (1989) Autoacceleration and kinetics of electrochemical polymerization of aniline. J Phys Chem 93:4878–4881

    Article  CAS  Google Scholar 

  38. Mezhuev YO, Korshak YV, Shtilman MI, Pokhil SE, Strakhov IS (2015) Kinetic features of N-ethylaniline polymerization. Russ J Gen Chem 85:1482–1486

    Article  CAS  Google Scholar 

  39. Strakhov YS, Mezhuev YO, Korshak YV, Stilman MI (2016) Kinetics and mechanism of oxidative polymerization of phenylenediamines. Russ J Gen Chem 86:2682–2688

    Article  CAS  Google Scholar 

  40. Mezhuev YO, Korshak YV, Shtil’man MI, Brudz’ SP, Pokhil SE, Firer AA, Strakhov IS (2015) The Competition between Processes of Oxidative Polymerisation of 2-Methoxyaniline and Oxidative Degradation of Poly-(2-Methoxyaniline). Int Polymer Sci Tech 42:21-24

    Article  Google Scholar 

  41. Mezhuev YO, Korshak YV, Shtilman MI, Strakhov IS (2014) Kinetics and Mechanism of the Chemical Oxidative Polymerization of P-Semidine. Theor Exp Chem 50:331–334

    Article  CAS  Google Scholar 

  42. Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003) Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41:1551–1557

    Article  CAS  Google Scholar 

  43. Konyushenko E, Stejskal J, Trchová M, Hradil J, Kovářová J, Prokeš J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Multi-wall carbon nanotubes coated with polyaniline. Polymer 47:5715–5723

    Article  CAS  Google Scholar 

  44. Liu P, Liu W, Xue Q (2004) In situ chemical oxidative graft polymerization of aniline from silica nanoparticles. Mater Chem Phys 87:109–113

    Article  CAS  Google Scholar 

  45. Kim BS, Lee KT, Huh PH, Lee DH, Jo NJ, Lee JO (2009) In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles. Synth Met 159:1369–1372

    Article  CAS  Google Scholar 

  46. Bhadra S, Lee JH (2009) Synthesis of higher soluble nanostructured polyaniline by vapor-phase polymerization and determination of its crystal structure. J Appl Polym Sci 114:331–340

    Article  CAS  Google Scholar 

  47. Shishov M, Moshnikov V, Sapurina I (2013) Self-organization of polyaniline during oxidative polymerization: formation of granular structure. Chem Pap 67:909–918

    Article  CAS  Google Scholar 

  48. Stejskal J, Sapurina I, Trchová M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481

    Article  CAS  Google Scholar 

  49. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym In 57:1295–1325

    CAS  Google Scholar 

  50. Sapurina I, Tenkovtsev AV, Stejskal J (2015) Conjugated polyaniline as a result of the benzidine rearrangement. Polym Int 64:453–465

    Article  CAS  Google Scholar 

  51. Sapurina I, Shishov MA (2012) In: Gomes AD (ed) New Polymers for Special Applications, InTech

  52. Peles-Lemli B, Matisz G, Kelterer AM, Fabian WM, Kunsági-Máté S (2010) Noncovalent Interaction between Aniline and Carbon Nanotubes: Effect of Nanotube Diameter and the Hydrogen-Bonded Solvent Methanol on the Adsorption Energy and the Photophysics. J Phys Chem C 114:5898–5905

    Article  CAS  Google Scholar 

  53. Maurer RJ, Sax AF (2010) Solvation of carbon nanotubes by aniline calculated with density functional tight binding. Phys Chem Chem Phys 12:9893–9899

    Article  CAS  PubMed  Google Scholar 

  54. Duong NH (2011) In: Yellampalli S (ed) Carbon Nanotubes - Synthesis, Characterization, Applications, InTech

  55. Ramana GV, Padya B, Srikanth VV, Jain PK, Padmanabham G, Sundararajan G (2011) Electrically conductive carbon nanopipe-graphite nanosheet/polyaniline composites. Carbon 49:5239–5245

    Article  Google Scholar 

  56. Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J Polym Sci B Polym Phys 45:3137–3147

    Article  CAS  Google Scholar 

  57. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes. J Phys Chem B 106:5852–5858

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Iranian Nanotechnology Initiative Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodratollah Hashemi Motlagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi Yazdi, M., Hashemi Motlagh, G., Saeedi Garakani, S. et al. Effects of multiwall carbon nanotubes on the polymerization model of aniline. J Polym Res 25, 265 (2018). https://doi.org/10.1007/s10965-018-1655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1655-7

Keywords

Navigation