Skip to main content
Log in

Effect of multiwall carbon nanotubes surface on polymerization of aniline and properties of its products

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The effect of surface of multiwall carbon nanotubes on the course of oxidative polymerization of aniline has been studied. In the presence of amorphous carbon fragments at the nanotubes surface, the polymerization at the monomer: nanotubes mass ratio of 10 : 1 yields the composite based on polyaniline and carbon nanotubes. At the same components ratio, carbon nanotubes purified of amorphous carbon inhibit polymerization of aniline, and the process results in oxidation of the nanotubes surface; however, at the lower purified nanotubes content the polymerization proceeds to give the polyaniline/nanotubes composite. Purification of the nanotubes of amorphous carbon significantly enhances electrochemical stability of their composites with polyaniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandrakanthi, N. and Careem, M.A., Polym. Bull., 2000, vol. 44, p. 101. DOI: 10.1007/s002890050579.

    Article  CAS  Google Scholar 

  2. Rout, T.K., Jha, G., Singh, A.K., Bandyopadhyay, N., and Mohanty, O.N., Surf. Coat.Technol., 2003, vol. 167, p. 16. DOI: 10.1016/S0257-8972(02)00862-9.

    Article  CAS  Google Scholar 

  3. Prakash, R. and Santhanam, K.S.V., J. Solid State Electrochem., 1998, vol. 2, p. 123. DOI: 10.1007/s100080050076.

    Article  CAS  Google Scholar 

  4. Watanabe, A., Mori, K., Iwasaki, Y., Nakamura, Y., and Niizuma, S., Macromolecules, 1987, vol. 20, p. 1793. DOI: 10.1021/ma00174a015.

    Article  CAS  Google Scholar 

  5. Yang, L., Qiu, W., and Liu, Q., Solid State Ion., 1996, vols. 86–88, part 2, p. 819. DOI: 10.1016/0167-2738 (96)00189-0.

    Article  Google Scholar 

  6. Kukla, A.L., Shirshov, Y.M., and Piletsky, S.A., Sens. Actuators B Chem., 1996, vol. 37, p. 135. DOI: 10.1016/S0925-4005(97)80128-1.

    Article  CAS  Google Scholar 

  7. Bobacka, J., Ivaska, A., and Lewenstam, A., Chem. Rev., 2008, vol. 108, p. 329. DOI: 10.1021/cr068100w.

    Article  CAS  Google Scholar 

  8. Milakin, K.A., Korovin, A.N., Moroz, E.V., Levon, K., Guiseppi-Elie, A., and Sergeyev, V.G., Electroanalysis, 2013, vol. 25, p. 1323. DOI: 10.1002/elan.201300023.

    Article  CAS  Google Scholar 

  9. Terrones, M., Annu. Rev. Mater. Res., 2003, vol. 33, p. 419. DOI: 10.1146/annurev.matsci.33.012802.100255.

    Article  CAS  Google Scholar 

  10. Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M., Nature, 1996, vol. 381, p. 678. DOI: 10.1038/381678a0.

    Article  CAS  Google Scholar 

  11. Konyushenko, E.N., Stejskal, J., Trchova, M., Hradil, J., Kovarova, J., Prokes, J., Cieslar, M., Hwang, J.-Y., Chen, K.-H., and Sapurina, I., Polymer, 2006, vol. 47, p. 5715. DOI: 10.1016/j.polymer.2006.05.059.

    Article  CAS  Google Scholar 

  12. Fong, Y. and Schlenoff, J.B., Polymer, 1995, vol. 36, p. 639. DOI: 10.1016/0032-3861(95)91574-Q.

    Article  CAS  Google Scholar 

  13. Stejskal, J. and Gilbert, R.G., Pure Appl. Chem., 2002, vol. 74, p. 857. DOI: 10.1351/pac200274050857.

    Article  CAS  Google Scholar 

  14. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., Carbon, 2008, vol. 46, p. 833. DOI: 10.1016/j.carbon.2008.02.012.

    Article  CAS  Google Scholar 

  15. Cinke, M., Li, J., Chen, B., Cassell, A., Delzeit, L., Han, J., and Meyyappan, M., Chem. Phys. Lett., 2002, vol. 365, p. 69. DOI: 10.1016/S0009-2614(02)01420-3.

    Article  CAS  Google Scholar 

  16. Chen, J.H., Li, W.Z., Wang, D.Z., Yang, S.X., Wen, J.G., and Ren, Z.F., Carbon, 2002, vol. 40, p. 1193. DOI: 10.1016/S0008-6223(01)00266-4.

    Article  CAS  Google Scholar 

  17. Hu, C.-C., Su, J.-H., and Wen, T.-C., J. Phys. Chem. Solids, 2007, vol. 68, p. 2353. DOI: 10.1016/j.jpcs.2007.07.002.

    Article  CAS  Google Scholar 

  18. Osswald, S., Flahaut, E., Ye, H., and Gogotsi, Y., Chem. Phys. Lett., 2005, vol. 402, p. 422. DOI: 10.1016/j.cplett.2004.12.066.

    Article  CAS  Google Scholar 

  19. Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Chichester. John Wiley & Sons, 2006, p. 97.

    Google Scholar 

  20. Xie, J., Ahmad, M.N., Bai, H., Li, H., and Yang, W., Sci. China Chem., 2010, vol. 53, p. 2026. DOI: 10.1007/s11426-010-4061-5.

    Article  CAS  Google Scholar 

  21. Moreno-Castilla, C., Carrasco-Marin, F., and Mueden, A., Carbon, 1997, vol. 35, p. 1619. DOI: 10.1016/S0008-6223(97)00121-8.

    Article  CAS  Google Scholar 

  22. Liu, P. and Wang, T., Appl. Phys. A, 2009, vol. 97, p. 771. DOI: 10.1007/s00339-009-5314-z.

    Article  CAS  Google Scholar 

  23. Kang, E.T., Neoh, K.G., and Tan, K.L., Prog. Polym. Sci., 1998, vol. 23, p. 277. DOI: 10.1016/S0079-6700 (97)00030-0.

    Article  CAS  Google Scholar 

  24. Trchova, M. and Stejskal, J., Pure Appl. Chem., 2011, vol. 83, p. 1803. DOI: 10.1351/PAC-REP-10-02-01.

    Article  CAS  Google Scholar 

  25. Sivakumar, C., Gopalan, A., Vasudevan, T., and Wen, T.-C., Synth. Met., 2002, vol. 126, p. 123. DOI: 10.1016/S0379-6779(01)00481-7.

    Article  CAS  Google Scholar 

  26. Stejskal, J., Kratochvil, P., and Jenkins, A.D., Polymer, 1996, vol. 37, p. 367. DOI: 10.1016/0032-3861(96)81113-X.

    Article  CAS  Google Scholar 

  27. Galano, A., Nanoscale, 2010, vol. 2, p. 373. DOI: 10.1039/B9NR00364A.

    Article  CAS  Google Scholar 

  28. Voitko, K.V., Whitby, R.L.D., Gun’ko, V.M., Bakalinska, O.M., Kartel, M.T., Laszlo, K., Cundy, A.B., and Mikhalovsky, S.V., J. Colloid Interface Sci., 2011, vol. 361, p. 129. DOI: 10.1016/j.jcis.2011.05.048.

    Article  CAS  Google Scholar 

  29. Galano, A., J. Phys. Chem. (C), 2008, vol. 112, p. 8922. DOI: 10.1021/jp801379g.

    CAS  Google Scholar 

  30. Fenoglio, I., Tomatis, M., Lison, D., Muller, J., Fonseca, A., Nagy, J.B., and Fubini, B., Free Radic. Biol. Med., 2006, vol. 40, p. 1227. DOI: 10.1016/j.freeradbiomed.2005.11.010.

    Article  CAS  Google Scholar 

  31. Chen, W., Fan, Z., Gu, L., Bao, X., and Wang, C., Chem. Commun., 2010, vol. 46, p. 3905. DOI: 10.1039/C000517G.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Milakin.

Additional information

Original Russian Text © K.A. Milakin, I.A. Yaremenko, A.V. Smirnova, O.A. Pyshkina, V.G. Sergeyev, 2015, published in Zhurnal Obshchei Khimii, 2015, Vol. 85, No. 5, pp. 852–858.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milakin, K.A., Yaremenko, I.A., Smirnova, A.V. et al. Effect of multiwall carbon nanotubes surface on polymerization of aniline and properties of its products. Russ J Gen Chem 85, 1146–1151 (2015). https://doi.org/10.1134/S1070363215050242

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215050242

Keywords

Navigation