Skip to main content
Log in

Process study, development and degradation behavior of different size scale electrospun poly(caprolactone) and poly(lactic acid) fibers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study describes the preparation of electrospun poly(caprolactone) (PCL) and poly(lactic acid) (PLA) fibrous scaffolds with and without nano-hydroxyapatite (nHAp) having nanoscale, microscale and combined micro/nano (multiscale) architecture. Processing parameters such as polymer concentration, voltage, flow rate and solvent compositions were varied in wide range to display the effect of each one in determining the diameter and morphology of fibers. The effect of each regulating parameter on fiber morphology and diameter was evaluated and characterized using scanning electron microscope (SEM). Degradability of the selected fibrous scaffolds was verified by phosphate buffered saline immersion and its morphology was analyzed through SEM, after 5 and 12 months. Quantitative measurement in degradation was further evaluated through pH analysis of the medium. Both studies revealed that PLA had faster degradation compared to PCL irrespective of the size scale nature of fibers. Structural stability evaluation of the degraded fibers in comparison with pristine fibers by thermogravimetric analysis further confirmed faster degradability of PLA compared to PCL fibers. The results indicate that PLA showed faster degradation than PCL irrespective of the size-scale nature of fibrous scaffolds, and therefore, could be applied in a variety of biomedical applications including tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  CAS  Google Scholar 

  2. Ryu YJ, Kim HY, Lee KH, Park HC, Lee DR (2003) Transport properties of electrospun nylon 6 nonwoven mats. Eur Polym J 39:1883–1889

    Article  CAS  Google Scholar 

  3. McKee MG, Wilkes GL, Colby RH, Long TE (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760–1767

    Article  CAS  Google Scholar 

  4. Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40:2119–2129

    Article  CAS  Google Scholar 

  5. Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407

    Article  CAS  Google Scholar 

  6. Yuan X, Zhang Y, Dong C, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53:1704–1710

    Article  CAS  Google Scholar 

  7. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41:409–421

    Article  CAS  Google Scholar 

  8. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2013) Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene. Text Res J 83:606–617

    Article  Google Scholar 

  9. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH (2005) Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 46:5094–5102

    Article  CAS  Google Scholar 

  10. Zhang J, Qiu K, Sun B, Fang J, Zhang K, Ei-Hamshary H, Al-Deyab SS, Mo X (2014) The aligned core-sheath nanofibers with electrical conductivity for neural tissue engineering. J Mater Chem B 2:7945–7954

    Article  CAS  Google Scholar 

  11. Kim B, Park H, Lee S-H, Sigmund WM (2005) Poly(acrylic acid) nanofibers by electrospinning. Mater Lett 59:829–832

    Article  CAS  Google Scholar 

  12. Ziani K, Henrist C, Jérôme C, Aqil A, Maté JI, Cloots R (2011) Effect of nonionic surfactant and acidity on chitosan nanofibers with different molecular weights. Carbohydr Polym 83:470–476

    Article  CAS  Google Scholar 

  13. Luk Y-Y, Abbott NL (2002) Applications of functional surfactants. Curr Opin Colloid Interface Sci 7:267–275

    Article  CAS  Google Scholar 

  14. Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.11.015

  15. Park JY, Lee IH, Bea GN (2008) Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. J Ind Eng Chem 14:707–713

    Article  CAS  Google Scholar 

  16. Li Z, Wang C (2013) Effects of working parameters on electrospinning. One-dimensional nanostructures: Electrospinning technique and unique nanofibers. Springer Berlin Heidelberg, Berlin, pp 15–28

    Chapter  Google Scholar 

  17. McCann JT, Li D, Xia Y (2005) Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J Mater Chem 15:735–738

    Article  CAS  Google Scholar 

  18. Wang Y, Wang B, Wang G, Yin T, Yu Q (2009) A novel method for preparing electrospun fibers with nano−/micro-scale porous structures. Polym Bull 63:259–265

    Article  CAS  Google Scholar 

  19. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50

    Article  CAS  Google Scholar 

  20. Ma G, Liu Y, Peng C, Fang D, He B, Nie J (2011) Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydr Polym 86:505–512

    Article  CAS  Google Scholar 

  21. Chandra S, Bharadwaj R, Mukherji S (2017) Label free ultrasensitive optical sensor decorated with polyaniline nanofibers: characterization and immunosensing application. Sens Actuator B-Chem 240:443–450

    Article  CAS  Google Scholar 

  22. Guzman JJL, Pehlivaner Kara MO, Frey MW, Angenent LT (2017) Performance of electro-spun carbon nanofiber electrodes with conductive poly(3,4-ethylenedioxythiophene) coatings in bioelectrochemical systems. J Power Sources 356:331–337

    Article  CAS  Google Scholar 

  23. Manoukian OS, Matta R, Letendre J, Collins P, Mazzocca AD, Kumbar SG (2017) Electrospun nanofiber scaffolds and their hydrogel composites for the engineering and regeneration of soft tissues. In: Petrosko SH, Day ES (eds) Biomedical nanotechnology: Methods and protocols. Springer New York, New York, pp 261–278

    Chapter  Google Scholar 

  24. Jordan AM, Viswanath V, Kim S-E, Pokorski JK, Korley LTJ (2016) Processing and surface modification of polymer nanofibers for biological scaffolds: a review. J Mater Chem B 4:5958–5974

    Article  CAS  Google Scholar 

  25. Lv Y, Pan Q, Bligh SWA, Li H, Wu H, Sang Q, Zhu L-M (2017) Core-sheath nanofibers as drug delivery system for thermoresponsive controlled release. J Pharm Sci 106:1258–1265

    Article  CAS  Google Scholar 

  26. Guo Z, Li P, Che H, Wang G, Wu C, Zhang X, Mu J (2016) One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity. Ceram Int 42:4517–4525

    Article  CAS  Google Scholar 

  27. Li H, Williams GR, Wu J, Lv Y, Sun X, Wu H, Zhu L-M (2017) Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. Int J Pharm 517:135–147

    Article  CAS  Google Scholar 

  28. González E, Shepherd L, Saunders L, Frey M (2016) Surface functional Poly(lactic Acid) electrospun nanofibers for biosensor applications. Materials 9:47

    Article  Google Scholar 

  29. Wei M, Jiang M, Liu X, Wang M, Mu S (2016) Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance. J Power Sources 327:384–393

    Article  CAS  Google Scholar 

  30. Zhang X, Jia C, Qiao X, Liu T, Sun K (2017) Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering. Polym Test 62(Supplement C):88–95

    Article  CAS  Google Scholar 

  31. Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Reg Med 10:715–738

    Article  CAS  Google Scholar 

  32. Shalumon KT, Sowmya S, Sathish D, Chennazhi KP, Nair SV, Jayakumar R (2013) Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/Chitosan nanofibers for bone and periodontal tissue engineering. J Biomed Nanotech 9:430–440

    Article  CAS  Google Scholar 

  33. Prakash KH, Kumar R, Ooi CP, Cheang P, Khor KA (2006) Apparent solubility of hydroxyapatite in aqueous medium and its influence on the morphology of nanocrystallites with precipitation temperature. Langmuir 22:11002–11008

    Article  CAS  Google Scholar 

  34. Wan Y, Wu H, Cao X, Dalai S (2008) Compressive mechanical properties and biodegradability of porous poly(caprolactone)/chitosan scaffolds. Polym Degrad Stab 93:1736–1741

    Article  CAS  Google Scholar 

  35. Park KI, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94:834–844

    Article  CAS  Google Scholar 

  36. He J-H, Wan Y-Q, Yu J-Y (2005) Scaling law in electrospinning: relationship between electric current and solution flow rate. Polymer 46:2799–2801

    Article  CAS  Google Scholar 

  37. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  38. Liu Y, He J-H, Yu J-y, H-m Z (2008) Controlling numbers and sizes of beads in electrospun nanofibers. Polym Int 57:632–636

    Article  CAS  Google Scholar 

  39. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40:4585–4592

    Article  CAS  Google Scholar 

  40. Pornsopone V, Supaphol P, Rangkupan R, Tantayanon S (2005) Electrospinning of methacrylate-based copolymers: effects of solution concentration and applied electrical potential on morphological appearance of as-spun fibers. Polym Eng Sci 45:1073–1080

    Article  CAS  Google Scholar 

  41. Xin Y, Huang ZH, Yan EY, Zhang W, Zhao Q (2006) Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning. Appl Phys Lett 89:053101

    Article  Google Scholar 

  42. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Controlling the fiber diameter during electrospinning. Phys Rev Lett 90:144502

    Article  Google Scholar 

  43. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27:724–734

    Article  CAS  Google Scholar 

  44. Lu C, Chen P, Li J, Zhang Y (2006) Computer simulation of electrospinning. Part I. Effect of solvent in electrospinning. Polymer 47:915–921

    Article  CAS  Google Scholar 

  45. McKee MG, Hunley MT, Layman JM, Long TE (2006) Solution rheological behavior and electrospinning of cationic polyelectrolytes. Macromolecules 39:575–583

    Article  CAS  Google Scholar 

  46. Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B Polym Phys 39:2598–2606

    Article  CAS  Google Scholar 

  47. Shalumon KT, Binulal NS, Deepthy M, Manzoor K, Jayakumar R, Nair SV (2010) Preparation, characterization and cell attachment studies of electrospun multi-scale poly(caprolactone) fibrous scaffolds for tissue engineering. J Macromol Sci A 48:21–30

    Article  Google Scholar 

  48. Srinivasan S, Jayakumar R, Chennazhi KP, Levorson EJ, Mikos AG, Nair SV (2012) Multiscale Fibrous Scaffolds in Regenerative Medicine. In: Jayakumar R, Nair S (eds) Biomedical applications of polymeric nanofibers. Springer Berlin Heidelberg, Berlin, pp 1–20

    Google Scholar 

  49. Shalumon KT, Chennazhi KP, Tamura H, Kawahara K, Nair SV, Jayakumar R (2012) Fabrication of three-dimensional nano, micro and micro/nano scaffolds of porous poly(lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/three-dimensional projection technique. IET Nanobiotech 6:16–25

    Article  CAS  Google Scholar 

  50. Srinivasarao M, Collings D, Philips A, Patel S (2001) Three-dimensionally ordered array of air bubbles in a polymer film. Science 292:79–83

    Article  CAS  Google Scholar 

  51. Rashkov I, Manolova N, Li SM, Espartero JL, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains. Macromolecules 29:50–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Science and Technology (DST), Government of India and Global Innovation & Technology Alliance (GITA), India for supporting this project under India Taiwan Programme in Science and Technology (Ref. No. GITA/DST/TWN/P-71/2015), the Ministry of Science and Technology, Taiwan, ROC (MOST-104-2923-E-182-001-MY3) and Chang Gung Memorial Hospital (BMRP 249, CRRPD2G0141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Jayakumar or Jyh-Ping Chen.

Additional information

This article is part of the Topical Collection on Bio-Based Polymers

Electronic supplementary material

ESM 1

(DOC 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalumon, K., Anjana, J., Mony, U. et al. Process study, development and degradation behavior of different size scale electrospun poly(caprolactone) and poly(lactic acid) fibers. J Polym Res 25, 82 (2018). https://doi.org/10.1007/s10965-018-1475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1475-9

Keywords

Navigation