Skip to main content
Log in

Influence of graphene on the non-isothermal crystallization kinetics of poly(vinyl alcohol)/starch composite

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Non-isothermal crystallization behavior of poly(vinyl alcohol)/starch and poly(vinyl alcohol)/starch/graphene nanocomposites was studied using differential scanning calorimetry (DSC). Ozawa and Mo models were used to analyze the non-isothermal kinetics. The differential Friedman method was used to evaluate the effective activation energy (E A ) of the nanocomposites. The data fits the Mo Model well in the investigated temperature range. Graphene nucleates the crystallization of the composites by increasing the crystallization onset temperature along with the lowering of E A . However, significant changes in the crystallization half-time were not observed, suggesting that the effect of graphene is more prominent at the nucleation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shi Y-H, Dou Q (2013) Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim 112:901–911. https://doi.org/10.1007/s10973-012-2611-0

    Article  CAS  Google Scholar 

  2. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res - Part B Appl Biomater 100(B):1451–1457. https://doi.org/10.1002/jbm.b.32694

    Article  Google Scholar 

  3. Bin-Dahman OA, Jose J, Al-Harthi MA (2016) Effect of natural weather aging on the properties of poly(vinyl alcohol)/starch/graphenenanocomposite. Starch - Stärke. https://doi.org/10.1002/star.201600005

  4. Peppas NA, Merrill EW (1977) Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. J Biomed Mater Res 11:423–434. https://doi.org/10.1002/jbm.820110309

    Article  CAS  Google Scholar 

  5. Santos C, Silva CJ, Büttel Z et al (2014) Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydr Polym 99:584–592. https://doi.org/10.1016/j.carbpol.2013.09.008

    Article  CAS  Google Scholar 

  6. Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membranes. Int J Polym Anal Charact 18:287–296. https://doi.org/10.1080/1023666X.2013.767080

    Article  CAS  Google Scholar 

  7. Peppas NA, Tennenhouse D (2004) Semicrystalline poly(vinyl alcohol) films and their blends with poly(acrylic acid) and poly(ethylene glycol) for drug delivery applications. J Drug Deliv Sci Technol 14:291–297. https://doi.org/10.1016/S1773-2247(04)50050-3

    Article  CAS  Google Scholar 

  8. Wang X, Yucel T, Lu Q et al (2010) Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31:1025–1035. https://doi.org/10.1016/j.biomaterials.2009.11.002

    Article  CAS  Google Scholar 

  9. Carbone K, Casarci M, Varrone M (1999) Crosslinked poly(vinyl alcohol) supports for the immobilization of a lipolytic enzyme. J Appl Polym Sci 74:1881–1889. https://doi.org/10.1002/(SICI)1097-4628(19991121)74:8<1881::AID-APP1>3.0.CO;2-5

    Article  CAS  Google Scholar 

  10. Kenawy ER, Kamoun EA, Mohy Eldin MS, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7:372–380. https://doi.org/10.1016/j.arabjc.2013.05.026

    Article  CAS  Google Scholar 

  11. Pawde SM, Deshmukh K (2008) Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109:3431–3437. https://doi.org/10.1002/app.28454

    Article  CAS  Google Scholar 

  12. Costa LMM, de Olyveira GM, Cherian BM et al (2013) Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron Adstringens bark extract for medical applications. Ind Crop Prod 41:198–202. https://doi.org/10.1016/j.indcrop.2012.04.025

    Article  CAS  Google Scholar 

  13. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002

    Article  CAS  Google Scholar 

  14. Chai WL, Chow JD, Chen CC (2012) Effects of modified starch and different molecular weight polyvinyl alcohols on biodegradable characteristics of polyvinyl alcohol/starch blends. J Polym Environ 20:550–564. https://doi.org/10.1007/s10924-012-0419-4

    Article  CAS  Google Scholar 

  15. Maiti M, Kaith BS, Jindal R, Jana AK (2010) Synthesis and characterization of corn starch based green composites reinforced with Saccharum Spontaneum L graft copolymers prepared under micro-wave and their effect on thermal, physio-chemical and mechanical properties. Polym Degrad Stab 95:1694–1703. https://doi.org/10.1016/j.polymdegradstab.2010.05.024

    Article  CAS  Google Scholar 

  16. Bin-Dahman OA, Jose J, Al-Harthi MA (2015) Compatibility of poly(acrylic acid)/starch blends. Starch/Staerke 67:1061–1069. https://doi.org/10.1002/star.201500011

    Article  CAS  Google Scholar 

  17. Sreekumar P, Al-Harthi MA, De S (2012) Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. J Compos Mater 46:3181–3187. https://doi.org/10.1177/0021998312436998

    Article  CAS  Google Scholar 

  18. Sreekumar PA, Al-Harthi MA, De SK (2012) Effect of glycerol on thermal and mechanical properties of polyvinyl alcohol/starch blends. J Appl Polym Sci 123:135–142. https://doi.org/10.1002/app.34465

    Article  CAS  Google Scholar 

  19. Sreekumar PA, Al-Harthi MA, De SK (2012) Studies on compatibility of biodegradable starch/polyvinyl alcohol blends. Polym Eng Sci 52:2167–2172. https://doi.org/10.1002/pen.23178

    Article  CAS  Google Scholar 

  20. Appu SP, De SK, Khan MJ, Al-Harthi MA (2013) Natural weather ageing of starch/polyvinyl alcohol blend: effect of glycerol content. J Polym Eng 33:257–263. https://doi.org/10.1515/polyeng-2012-0048

    CAS  Google Scholar 

  21. Jose J, De SK, Al Ma’adeed MAA et al (2015) Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend. Starch/Staerke 67:147–153. https://doi.org/10.1002/star.201400074

    Article  CAS  Google Scholar 

  22. Jose J, Al-Harthi MA, AlMa’adeed MAA et al (2015) Effect of graphene loading on thermomechanical properties of poly(vinyl alcohol)/starch blend. J Appl Polym Sci 132:41827. https://doi.org/10.1002/app.41827

    Article  Google Scholar 

  23. Piorkowska E, Galeski A, Haudin JM (2006) Critical assessment of overall crystallization kinetics theories and predictions. Prog Polym Sci 31:549–575. https://doi.org/10.1016/j.progpolymsci.2006.05.001

    Article  CAS  Google Scholar 

  24. Huang H, Gu L, Ozaki Y (2006) Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol). Polymer (Guildf) 47:3935–3945. https://doi.org/10.1016/j.polymer.2006.03.089

    Article  CAS  Google Scholar 

  25. Peng Z, Kong LX, Li SD (2005) Non-isothermal crystallisation kinetics of self-assembled polyvinylalcohol/silica nano-composite. Polymer (Guildf) 46:1949–1955. https://doi.org/10.1016/j.polymer.2004.12.026

    Article  CAS  Google Scholar 

  26. Zhu Y, Du Z, Li H, Zhang C (2011) Preparation and crystallization behavior of multiwalled carbon nanotubes/poly(vinyl alcohol) nanocomposites. Polym Eng Sci 51:1770–1779. https://doi.org/10.1002/pen.21964

    Article  CAS  Google Scholar 

  27. Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer (Guildf) 45:4437–4443. https://doi.org/10.1016/j.polymer.2004.04.031

    Article  CAS  Google Scholar 

  28. Peng Z, Chen D (2006) Study on the nonisothermal crystallization behavior of poly(vinyl alcohol)/attapulgite nanocomposites by DSC analysis. J Polym Sci Part B Polym Phys 44:534–540. https://doi.org/10.1002/polb.20719

    Article  CAS  Google Scholar 

  29. Li C, Hou T, Vongsvivut J et al (2015) Simultaneous crystallization and decomposition of PVA/MMT composites during non-isothermal process. Thermochim Acta 618:26–35. https://doi.org/10.1016/j.tca.2015.09.009

    Article  CAS  Google Scholar 

  30. Li C, Vongsvivut J, She X et al (2014) New insight into non-isothermal crystallization of PVA-graphene composites. Phys Chem Chem Phys 16:22145–22158. https://doi.org/10.1039/c4cp03613a

    Article  CAS  Google Scholar 

  31. Lee S, Hong J-Y, Jang J (2013) The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polym Int 62:901–908. https://doi.org/10.1002/pi.4370

    Article  CAS  Google Scholar 

  32. Hassanjani Roushan A, Omrani A, Motahari A, Rostami AA (2016) Influence of octasilane POSS on non-isothermal crystallization, thermal stability and conductivity of poly(vinyl alcohol) nanocomposite. Polym-Plast Technol Eng 55:268–277. https://doi.org/10.1080/03602559.2015.1070870

    Article  CAS  Google Scholar 

  33. Jang J, Lee DK (2003) Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer (Guildf) 44:8139–8146. https://doi.org/10.1016/j.polymer.2003.10.015

    Article  CAS  Google Scholar 

  34. Bosq N, Guigo N, Persello J, Sbirrazzuoli N (2014) Melt and glass crystallization of PDMS and PDMS silica nanocomposites. Phys Chem Chem Phys 16:7830–7840. https://doi.org/10.1039/c4cp00164h

    Article  CAS  Google Scholar 

  35. Shehzad F, Thomas SP, Al-Harthi MA (2014) Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in-situ polymerization. Thermochim Acta 589:226–234. https://doi.org/10.1016/j.tca.2014.05.039

    Article  CAS  Google Scholar 

  36. Li C, Dou Q, Bai Z, Lu Q (2015) Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim 122:407–417. https://doi.org/10.1007/s10973-015-4677-y

    Article  CAS  Google Scholar 

  37. Pas SJ, Dargusch MS, MacFarlane DR et al (2011) Crystallisation kinetics of some archetypal ionic liquids: isothermal and non-isothermal determination of the Avrami exponent. Phys Chem Chem Phys 13:12033. https://doi.org/10.1039/c1cp00040c

    Article  CAS  Google Scholar 

  38. Daud M, Shehzad F, Al-Harthi MA (2015) Non-isothermal crystallization kinetics of LLDPE prepared by in situ polymerization in the presence of nano titania. Polym Bull 72:1233–1245. https://doi.org/10.1007/s00289-015-1335-2

    Article  CAS  Google Scholar 

  39. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer (Guildf) 12:150–158. https://doi.org/10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  40. Avrami M (1939) Kinetics of phase change. I General Theory. J Chem Phys 7:1103. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  41. Shi N, Dou Q (2015) Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim 119:635–642. https://doi.org/10.1007/s10973-014-4162-z

    Article  CAS  Google Scholar 

  42. Liu T, Mo Z, Wang S, Zhang H (1997) Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK). Polym Eng Sci 37:568–575. https://doi.org/10.1016/S0014-3057(97)00016-5

    Article  CAS  Google Scholar 

  43. Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer (Guildf) 45:4953–4968. https://doi.org/10.1016/j.polymer.2004.04.057

    Article  CAS  Google Scholar 

  44. Chafidz A, Ali I, Ali Mohsin ME et al (2012) Atomic force microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO3 nanocomposites. J Polym Res 19:1–17. https://doi.org/10.1007/s10965-012-9860-2

    Article  Google Scholar 

  45. Vyazovkin S (2002) Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775. https://doi.org/10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-G

    Article  CAS  Google Scholar 

  46. Starink M (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176. https://doi.org/10.1016/S0040-6031(03)00144-8

    Article  CAS  Google Scholar 

  47. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 6:183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  48. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/bcsj.38.1881

    Article  CAS  Google Scholar 

  49. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706. https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  50. Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol 16:22–31

    Google Scholar 

  51. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532. https://doi.org/10.1002/marc.200600404

    Article  CAS  Google Scholar 

  52. Ferreira CI, Dal Castel C, Oviedo MAS, Mauler RS (2013) Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta 553:40–48. https://doi.org/10.1016/j.tca.2012.11.025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamdouh A. Al-Harthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin-Dahman, O.A., Shehzad, F. & Al-Harthi, M.A. Influence of graphene on the non-isothermal crystallization kinetics of poly(vinyl alcohol)/starch composite. J Polym Res 25, 5 (2018). https://doi.org/10.1007/s10965-017-1400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1400-7

Keywords

Navigation