Skip to main content
Log in

Nanocomposite polyazomethine/reduced graphene oxide with enhanced conductivity

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We produced thermally reduced graphene oxide (rGO) by reduction of graphene oxide using a thermal shock followed by annealing at 800 °С. The PAZ/rGO nanocomposite comprised of conjugated azomethine polymer (PAZ) and rGO (2 wt%) was fabricated through solution blending method. Both PAZ/rGO nanocomposite and its components, PAZ and rGO, were investigated with wide-angle X-ray scattering, scanning electron microscopy, transmittance electron microscopy, and atomic force microscopy, Fourier transform infrared spectroscopy, UV-Vis spectroscopy, broadband dielectric spectrometry, four-probe conductivity method, and energy dispersive spectroscopy. Strong physical interaction rather than chemical one between the polymer matrix and rGO nanoparticles was found. Electrical conductivity of PAZ/rGO nanocomposite was detected to increase for four orders as compared with that of pure PAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Paul DR, Robeson LM (2008) Polymer nanotechnology: Nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  2. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343

    Article  CAS  Google Scholar 

  3. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Progr Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  4. Jariwala D, Sangwan VK, Lauhon L, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860

    Article  CAS  Google Scholar 

  5. Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141

    Article  Google Scholar 

  6. Badamshina E, Gafurova M (2012) Polymeric nanocomposites containing non-covalently bonded fullerene C60: properties and applications. J Mater Chem 22:9427–9438

    Article  CAS  Google Scholar 

  7. Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28

    Article  CAS  Google Scholar 

  8. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  CAS  Google Scholar 

  9. Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mat Chem 20:743–748

    Article  CAS  Google Scholar 

  10. Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21

    Article  CAS  Google Scholar 

  11. Wang J, Wang X, Xu M, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822

    Article  CAS  Google Scholar 

  12. Kashyap S, Pratihar SK, Behera SK (2016) Strong and ductile graphene oxide reinforced PVA nanocomposites. J Alloys Compounds 684:254–260

    Article  CAS  Google Scholar 

  13. Xie F, Qi SH, Wu D (2016) A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites. Express Polym Lett 10:470–478

    Article  CAS  Google Scholar 

  14. Pron A, Rannou P (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progr Polym Sci 27:135–190

    Article  CAS  Google Scholar 

  15. Omelchenko OD, Gribkova OL, Tameev AR, Vannikov AV (2014) The effect of the degree of graphene oxidation on the electric conductivity of nanocomposites based on a polyaniline complex. Tech Phys Lett 40:807–809

    Article  CAS  Google Scholar 

  16. Iakobson OD, Gribkova OL, Tameev AR, Kravchenko VV, Egorov AV, Vannikov AV (2016) Conductive composites of polyaniline–polyacid complex and graphene nanostacks. Synth Metals 211:89–98

    Article  CAS  Google Scholar 

  17. Imran SM, Kim Y, Shao GN, Hussain M, Choa Y, Kim HT (2014) Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization. J Mater Sci 49:1328–1335

    Article  CAS  Google Scholar 

  18. Solonaru AM, Grigoras M (2017) Water-soluble polyaniline/graphene composites as materials for energy storage applications. Express Polym Lett 11:127–139

    Article  Google Scholar 

  19. Iwan A, Sek D (2008) Processible polyazomethines and polyketanils: from aerospace to light-emitting diodes and other advanced applications. Prog Polym Sci 33:289–345

    Article  CAS  Google Scholar 

  20. Hussein MA, Abdel-Rahman MA, Asiri AM, Alamry KA, Aly KI (2012) Review on liquid crystalline polyazomethines polymers: basics, syntheses and characterization. Designed monomers. Polymers 15:431–463

    CAS  Google Scholar 

  21. Bronnikov S, Kostromin S, Musteaţa V, Cozan V (2015) Polyazomethine with m-tolylazo side groups: thermal, dielectric and conductive behaviour. Liq Cryst 42:1102–1110

    Article  CAS  Google Scholar 

  22. Bronnikov S, Podshivalov A, Kostromin S, Asandulesa M, Cozan V (2017) Electrical conductivity of polyazomethine/fullerene C60 nanocomposites. Phys Lett A 381:796–800

    Article  CAS  Google Scholar 

  23. Bronnikov S, Kostromin S, Musteaţa V, Cozan V (2016) Dielectric study of side-chain liquid crystalline polyazomethine/fullerene C60 nanocomposite. J Polym Res 23:54

    Article  Google Scholar 

  24. Cozan V, Iftime M, Sava I, Bronnikov S (2015) Synthesis and thermotropic properties of polyazomethines containing side chain azobenzene moieties. High Perform Polym 27:661–668

    Article  CAS  Google Scholar 

  25. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  26. Punetha VD, Rana S, Yooc HJ, Chaurasiad A, McLeskey JT, Ramasamy MS, Sahoo NG, Cho JW (2017) Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog Polym Sci 67:1–47

    Article  CAS  Google Scholar 

  27. Yin H, Dittrich B, Farooq M, Kerling S, Wartig K-A, Hofmann D, Huth C, Okolieocha C, Altstädt V, Schönhals A, Schartel B (2015) Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties. J Polym Res 22:140

    Article  Google Scholar 

  28. Seresht RJ, Jahanshahi M, Rashidi AM, Ghoreyshi AA (2013) Synthesis and characterization of thermally-reduced graphene. Iranica J Energy Environ 4:53–59

    Google Scholar 

  29. Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ (2010) Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Mater 9:840–845

    Article  CAS  Google Scholar 

  30. Zhang C, Dabbs DM, Liu L-M, Aksay IA, Car R, Selloni A (2015) Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. J Phys Chem C 119:18167–18176

    Article  CAS  Google Scholar 

  31. Huh SH (2011) Thermal reduction of graphene oxide. In: Mikhailov S (ed) Physics and applications of graphene – experiments. InTech Europe, Rijeka, Croatia, pp 73–90

  32. Omelchenko OD, Gribkova OL, Tameev AR, Novikov SV, Vannikov AV (2014) Thin nanocomposite layers based on a complex of polyaniline and graphene. Protect Metals Phys Chem Surf 50:613–619

    Article  CAS  Google Scholar 

  33. Peng X-Y, Liu X-X, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  34. McDonald MP, Morozov Y, Hodak JH, Kuno M (2015) Spectroscopy and microscopy of graphene oxide and reduced graphene oxide. In: Gao W (ed) Graphene oxide. Reduction recipes, spectroscopy, and applications. Springer, Heidelberg, pp 29–60

    Google Scholar 

  35. Merino E, Ribagorda M (2012) Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090

    Article  CAS  Google Scholar 

  36. Purohit PJ, Huacuja-Sanchez JE, Wang D-Y, Emmerling F, Thünemann A, Heinrich G, Schönhals A (2011) Structureproperty relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules 44:4342–4353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors express their thanks to Mr. Maksim Gudkov (Semenov institute of Chemical Physics, Moscow) for his providing water GO dispersion and his advising for GO treatment methods. Authors also express their thanks to Dr. Liviu Sacarescu (“Petru Poni” Institute of Macromolecular Chemistry, Romania) for his providing additional microscopic data (TEM and AFM images of the nanocomposite).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Kostromin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostromin, S., Saprykina, N., Vlasova, E. et al. Nanocomposite polyazomethine/reduced graphene oxide with enhanced conductivity. J Polym Res 24, 211 (2017). https://doi.org/10.1007/s10965-017-1386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1386-1

Keywords

Navigation