Skip to main content
Log in

Bio-based mesoporous sponges of chitosan conjugated with amino acid-diketopiperazine through oil-in-water emulsions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Fully bio-based chitosan derivative was synthesized using 3-benzyl-2,5-diketopiperazine-6-acetic acid (DKP) activated by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. From IR and 1H NMR spectra, the structure of the bioconjugated chitosan and the quantitative modification were confirmed. Oil-in-water (o/w) emulsion of the obtained product was presented with the various ratios of water and benzene solution. Continuously the obtained o/w emulsions were freeze-dried to produce the mesoporous sponge, depended on the ratio of the water and benzene. These amphiphilic properties were observed by the property of the pendant DKP moieties in chitosan. The pore size in the sponges was controlled in a range from 0.1 to 0.3 μm by changing the solvent ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Article  Google Scholar 

  2. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  3. Rezwan K, Chen QZ, Blaker JJ, Boccaccini RA (2006) Biodegradable and bioactive porous polymer/inorganic composite scafforlds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  4. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  5. Fundador NG, Enomoto-Rogers Y, Takemura A, Iwata T (2012) Acetylation and characterization of xylan from hardwood kraft pulp. Carbohydr Polym 87:170–176

    Article  CAS  Google Scholar 

  6. Fundador NG, Enomoto-Rogers Y, Takemura A, Iwata T (2012) Synthesis and characterization of xylan esters. Polymer 53:3885–3893

    Article  CAS  Google Scholar 

  7. Enomoto-Rogers Y, Iio N, Takemura A, Iwata T (2015) Synthesis and characterization of pullulan alkyl esters. Eur Polym J 66:470–477

    Article  CAS  Google Scholar 

  8. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  9. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  10. Köhler S, Liebert T, Schöbitz M, Schaller J, Meister F, Günther W, Heinze T (2007) Interactions of ionic liquids with polysaccharides 1. Unexpected acetylation of cellulose with 1-ethylimidazorium acetate. Macromol Rapid Commun 28:2311–2317

    Article  Google Scholar 

  11. Xu D, Li B, Tate C, Edgar KJ (2011) Studies on regioselective acetylation of cellulose with bulky acid chlorides. Cellulose 18:405–419

    Article  CAS  Google Scholar 

  12. Elschner T, Heinze T (2014) A promising cellulose-based polyzwitterion with pH-sensitive charges. Beilstein J Org Chem 10:1549–1558

    Article  Google Scholar 

  13. Dong Y, Edgar KJ (2015) Imparting functional variety to cellulose via olefin cross-methathesis. Polym Chem 6:3816–3827

    Article  CAS  Google Scholar 

  14. Liu S, Liu J, Esker AR, Edgar KJ (2016) An efficient, regioselective pathway to cationic and zwitterionic N-heterocyclic cellulose ionomers. Biomacromolecules 17:503–513

    Article  CAS  Google Scholar 

  15. Gaines SM, Bada JL (1988) Aspartame decomposition and epimerization in the diketopiperazine and dipeptide products as a function of pH and temperature. J Org Chem 53:2757–2764

    Article  CAS  Google Scholar 

  16. Butchko HH, Stargel WW, Comer CP, Mayhew DA, Benninger C, Blackburn GL, Sonneville LMJ, Geha RS, Hetelendy Z, Koestner A, Leon AS, Liepa GU, McMartin KE, Mendenhall CL, Munro IC, Novotny EJ, Renwick AG, Schiffman SS, Schomer DL, Shaywits BA, Spiers PA, Tephly TR, Thomas JA, Trefz FK (2002) Aspartame: review of safety. Regul Toxicol Pharmacol 35:S1–S93

    Article  Google Scholar 

  17. Boni SD, Oberthür C, Hamburger M, GKE S (2004) Analysis of aspartyl peptide degradation products by high-performance liquid chromatography and high-performance liquid chromatography-mass spectrometry. J Chromatogr A 1022:95–102

    Article  Google Scholar 

  18. Stark T, Hofmann T (2005) Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J Agric Food Chem 53:7222–7231

    Article  CAS  Google Scholar 

  19. Mellini P, Kokkola T, Suuronen T, Salo HS, Tolvanen L, Mai A, Lahtela-Kakkonen M, Jarho E (2013) Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells. J Med Chem 56:6681–6695

    Article  CAS  Google Scholar 

  20. Hanabusa K, Matsumoto M, Kimura M, Kakehi A, Shirai H (2000) Low molecular weight gelators for organic fluids: gelation using a family of cyclo(dipeptide)s. J Colloid Interface Sci 224:231–244

    Article  CAS  Google Scholar 

  21. Yamg Y, Fukui H, Suzuki F, Shirai H, Hanabusa K (2005) Preparation of silica nanosprings using cationic gelators as template. Bull Chem Soc Jpn 78:2069–2074

    Article  Google Scholar 

  22. Hoshizawa H, Suzuki M, Hanabusa K (2011) Cyclo(L-aspartyl-L-phenylalanyl)-containing poly(dimethylsiloxane)-based thixotropic organogels. Chem Lett 40:1143–1145

    Article  CAS  Google Scholar 

  23. Hoshizawa H, Minemura Y, Yoshikawa K, Suzuki M, Hanabusa K (2013) Thixotropic hydrogelators based on a cyclo(dipeptide) derivative. Langmuir 29:14666–14673

    Article  CAS  Google Scholar 

  24. Hanabusa K, Takata S, Fujisaki M, Nomura Y, Suzuki M (2016) Fluorescent gelators for detection of explosives. Bull Chem Soc Jpn 89:1391–1401

    Article  CAS  Google Scholar 

  25. Rinaudo M (2006) Chichin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  26. Racine L, Texier I, Auzély-Velty R (2017) Chitosan-based hydrogels: recent design concepts to tailor properties and functions. Polym Int 66:981–998

    Article  CAS  Google Scholar 

  27. Fonseca-Santos B, Chorilli M (2017) An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mater Sci Eng C 77:1349–1362

    Article  CAS  Google Scholar 

  28. Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283

    Article  CAS  Google Scholar 

  29. Heras A, Rodríguez NM, Ramos VM, Agulló E (2001) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr Polym 44:1–8

    Article  CAS  Google Scholar 

  30. Ramos VM, Rodríguez NM, Díaz MF, Rodríguez MS, Agulló E (2003) N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydr Polym 52:39–46

    Article  CAS  Google Scholar 

  31. Holme KR, Hall LD (1991) Chitosan derivatives bearing C10-alkyl glucoside branches: a temperature-induced gelling polysaccharide. Macromolecules 24:3828–3833

    Article  CAS  Google Scholar 

  32. Ramos VM, Rodríguez NM, Díaz MF, Rodríguez MS, Agulló E (2003) Modified chitosan carrying phosphonic and alkyl groups. Carbohydr Polym 51:425–429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported mainly by Advanced Low Carbon Technology Research and Development Program (5100270) (JST-ALCA) and partially by Center of Innovation (COI) program “Construction of next-generation infrastructure using innovative materials – Realization of a safe and secure society that can coexist with the earth for centuries – supported by MEXT and JST”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Kaneko.

Additional information

This article is part of the Topical Collection on Bio-Based Polymers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takada, K., Yin, H., Matsui, T. et al. Bio-based mesoporous sponges of chitosan conjugated with amino acid-diketopiperazine through oil-in-water emulsions. J Polym Res 24, 216 (2017). https://doi.org/10.1007/s10965-017-1372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1372-7

Keywords

Navigation