Skip to main content
Log in

Ternary Solid Dispersion of Celecoxib Produced by the Solvent Method with Improved Solubility and Dissolution Properties

  • DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Celecoxib, the first cyclooxygenase-2 selective nonsteroidal anti-inflammatory drug, has a wide range of pharmacological effects, including anti-inflammatory, antirheumatic and antitumor effects. However, celecoxib’s poor solubility severely limits its clinical application. Thus, a novel ternary solid dispersion system was developed using PVP K30 and hydroxypropyl-β-cyclodextrin (HPβCD) as carrier materials in order to improve its solubility and dissolution behavior. The solid dispersion system was characterized by SEM, XRD, FT-IR, DSC, in vitro dissolution, saturated solubility, and contact angle test; the stability of the samples under extreme environments was investigated as well. The results showed that the novel ternary solid dispersion doped with PVP K30 and HPβCD has enhanced solubility around 6.28-fold, an almost 13.94-fold increase in the dissolution rate (120 min) compared with celecoxib’s active pharmaceutical ingredient. The substantial improvement in its dissolution performance is attributed to the fact that celecoxib is dispersed in the carrier material in an amorphous form and has hydrogen bonding interactions with the carrier materials. In addition, the improvement of wettability is one of the reasons for its increased solubility. In conclusion, the combination of PVP K30 and HPβCD can significantly improve the solubility of celecoxib and this novel solid dispersion system provides new ideas and methods to further improve the solubility of insoluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. M. Davies, A. J. McLachlan, R. O. Day, et al., Clin. Pharmacokinet., 38, 225 – 242 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. J. Li, Q. Hao, W. Cao, et al., Cancer Manage. Res., 10, 4653 – 4667 (2018).

    Article  CAS  Google Scholar 

  3. N. Tołoczko-Iwaniuk, D. Dziemiańczyk-Pakieła, K. B. Nowaszewska, et al., Curr. Drug Targets, 20, 302 – 315 (2019).

    Article  PubMed  Google Scholar 

  4. K. S. Ahmed, S. Changling, X. Shan, et al., J. Liposome Res., 30, 285 – 296 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. A. H. Schönthal, T. C. Chen, F. M. Hofman, et al., Expert Opin. Invest. Drugs., 17, 197 – 208 (2008).

    Article  Google Scholar 

  6. Þ. G. Küçükgüzel, Ý. Coþkun, S. Aydýn, et al., Molecules., 18, 3595 – 3614 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. D. Clemett, K. L. Goa, Drugs, 59, 957 – 980 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. F. Norouzi, A. Jouyban, F. Martinez, et al., Phys. Chem. Liq., 57, 755 – 767 (2019).

    Article  CAS  Google Scholar 

  9. X. He, M. R. Barone, P. J. Marsac, et al., Int. J. Pharm., 353, 176 – 186 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. C. Leuner, J. Dressman, Eur. J. Pharm. Biopharm., 50, 47 – 60 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. T. Turovsky, R. Khalfin, S. Kababya, et al., Langmuir, 31, 7183 – 7192 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. H.-I. Kim, S. Y. Park, S. J. Park, et al., Pharmaceutics, 10 (2018).

  13. I. Hwang, V. Renuka, J.-H. Lee, et al., Pharm. Dev. Technol., 25, 525 – 534 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. S. Mukesh, P. Joshi, A. K. Bansal, et al., Mol. Pharm., 18, 2334 – 2348 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. T. Vasconcelos, S. Marques, J. das Neves, et al., Adv. Drug Delivery Rev., 100, 85 – 101 (2016).

  16. T. Xie, L. S. Taylor, Pharm. Res., 33, 739 – 750 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. M. Maghsoodi, A. Nokhodchi, H. Pourasghari Azar, Pharm. Dev. Technol., 26, 788 – 796 (2021).

  18. K. R Berziņš, S. J. Fraser-Miller, G. F. Walker, et al., Mol. Pharm., 18, 3882 – 3893 (2021).

    Article  Google Scholar 

  19. D. E. Moseson, I. D. Corum, A. Lust, et al., The AAPS Journal, 23, 69 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. E.-J. Heo, S. Y. Park, H.-I. Kim, et al., J. Nanosci. Nanotechnol., 20, 5813 – 5818 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. A. Niederquell, E. Stoyanov, M. Kuentz, Mol. Pharm., 19, 690 – 703 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. H. J. Kwon, E.-J. Heo, Y.-H. Kim, et al., Pharmaceutics, 11(3), 136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. M. De Jongh, M. M. Verberk, C. E. T. Withagen, et al., Contact Dermatitis, 54, 325 – 333 (2006).

    Article  PubMed  Google Scholar 

  24. K. H. Park, J. M. Choi, E. Cho, et al., Polymers, 10, 111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. X. Yang, J. Shen, J. Liu, et al., Crystals, 12, 596 (2022).

    Article  CAS  Google Scholar 

  26. A. Homayouni, F. Sadeghi, A. Nokhodchi, et al., Iran J. Basic Med. Sci., 17, 322 – 331 (2014).

    Google Scholar 

  27. R. Ghanavati, A. Taheri, A. Homayouni, Materials Science and Engineering: C, 72, 501 – 511 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. A. Zoghbi, T. Geng, B. Wang, AAPS PharmSciTech, 18, 2927 – 2935 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. K. O. Boakye-Yiadom, S. Kesse, M. Aquib, et al., Polym. Adv. Technol., 31, 2270 – 2278 (2020).

    Article  CAS  Google Scholar 

  30. V. R. Sinha, R. Anitha, S. Ghosh, et al., Acta Pharmaceutica (Zagreb, Croatia), 57, 47 – 60 (2007).

  31. C. M. Hsu, S. C. Yu, F. J. Tsai, et al., Colloids and Surfaces. B. Biointerfaces, 180, 68 – 74 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. A. Homayouni, F. Sadeghi, A. Nokhodchi, et al., Iran J. Basic Med. Sci., 17, 322 – 331 (2014).

    Google Scholar 

  33. J. A. Baird, L. S. Taylor, Adv. Drug Deliv. Rev., 64, 396 – 421 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. S. Verma, V. S. Rudraraju, AAPS PharmSciTech, 16, 1079 – 1090 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li qing Zhu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ouyang, F., Li, T. et al. Ternary Solid Dispersion of Celecoxib Produced by the Solvent Method with Improved Solubility and Dissolution Properties. Pharm Chem J 57, 1627–1636 (2024). https://doi.org/10.1007/s11094-024-03058-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-024-03058-5

Keywords

Navigation