Skip to main content
Log in

Joint effects of molecular structure and crystal morphology of organophosphate monovalent salts on nucleated isotactic poly(propylene)

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The nucleation ability of organophosphate monovalent salts in isotactic poly(propylene) (iPP) was elucidated from the crystalline morphology and molecular structure with different size of cationic radius (r) of substitute parts. Differential scanning calorimetry result showed that the degree of crystallinity of nucleated iPP increased linearly with the increasing of r following the order of lithium (NA-10), sodium (NA-11), potassium (NA-12), ammonium (NA-13) salts of 2,2′-methylene- bis-(4,6-di-t-butylphenylene) phosphate. Moreover, small-angle X-ray scattering result displayed a large increase in the periodical length of nucleated iPP, which arises from an increment of both lamella thickness and amorphous thickness. Further, at 0.15 wt% concentration, the haze values of nucleated iPP presented a decrease tendency in the order of iPP/NA-10 (16.7 %), iPP/NA-11 (15.1 %), iPP/NA-12 (14.6 %), iPP/NA-13 (14.8 %), and their flexural strength was increased by 26.2 %, 30.8 %, 31.4 % and 31.7 %, respectively, as comparison to virgin iPP. These results demonstrated that the nucleating ability of these nucleating agents increased with the increase of r of substitute parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW (2003) Macromolecules 36:5150–5156

  2. Tang JG, Wang Y, Liu HY, Belfiore LA (2004) Polymer 45:2081–2091

  3. Yi QF, Wen XJ, Dong JY, Han CC (2008) Polymer 49:5053–5063

  4. Jin L, Wang H, Yang YJ (2013) Compos Sci Technol 79:58–63

  5. Han LJ, Han CY, Bian JJ, Bian YJ, Lin HJ, Wang XM, Zhang HL, Dong LS (2012) Polym Eng Sci 1474–1484

  6. Gahleitner M, Grein C, Kheirandish S, Wolfschwenger J (2011) Intern Polym Proc XXVI 1:2–20

  7. Chang HF, Li HY, Zheng T, Zhang LY, Yuan W, Li L, Huang H, Hu YL (2013) J Polym Res 20:207

  8. Balzano L, Portale G, Peters GWM, Rastogi S (2008) Macromolecules 41:5350–5355

  9. Li B, Hu GH, Cao GP, Liu T, Zhao L, Yuan WK (2008) J Supercritical Fluids 44:446–456

  10. Gui QD, Xin Z, Zhu WP, Dai GC (2003) J Appl Polym Sci 88:297–301

  11. Quan YN, Li HH, Yan SK (2013) Ind Eng Chem Res 52:4772–4778

  12. Patil N, Invigorito C, Gahleitner M, Rastogi S (2013) Polymer 54:5883–5891

  13. Nagasawa S, Fujimori A, Masuko T, Iguchi M (2005) Polymer 46:5241–5250

  14. Yoshimoto S, Ueda T, Yamanaka K, Kawaguchi A, Tobita E, Haruna T (2001) Polymer 42:9627–9631

  15. Abraham F, Kress R, Smith P, Schmidt HW (2013) Macromol Chem Phys 214:17–24

  16. Beck HN (1967) J Appl Polym Sci 11:673–685

  17. Shii YY, Shao LN, Yang JH, Huang T, Wang YH, Zhang N, Wang Y (2013) Polym Adv Technol 24:42–50

  18. Blomenhofer M, Ganzleben S, Hanft D, Schmidt HW, Kristiansen M, Smith P, Stoll K, Mader D, Hoffmann K (2005) Macromolecules 38:3688–3695

  19. Zhang YF, Xin Z (2006) J Appl Polym Sci 100:4868–4874

  20. Zhang YF, Xin Z (2006) J Appl Polym Sci 101:3307–3316

  21. Hiroyuki A, Inoue K (1997) JP 9–100371

  22. Alcazar D, Ruan J, Thierry A, Lotz B (2006) Macromolecules 39:2832–2840

  23. Haubruge HG, Daussin R, Jonas AM, Legras R (2003) Macromolecules 36:4452–4456

  24. Chvatalova L, Navratilova J, Cermak R, Raab M, Obadal M (2009) Macromolecules 42:7413–7417

  25. Urushihara T, Okada K, Watanabe K, Toda A, Kawamoto N, Hikosaka M (2009) Polymer J 41:228–236

  26. Libster D, Aserin A, Garti N (2007) Polym Adv Technol 18:685–695

  27. Urushihara T, Okada K, Watanabe K, Toda A, Tobita E, Kawamoto N, Hikosaka M (2007) Polymer J 39:55–64

  28. Okada K, Watanabe K, Urushihara T, Toda A, Hikosaka M (2007) Polymer 48:401–408

  29. Horvath Z, Menyhard A, Doshev P, Gahleitner M, Voros G, Varga J, Pukanszky B (2014) Appl Mater Interfaces 6:7456–7463

  30. Rungswang W, Thongsak K, Prasansuklarb A, Plailahan K, Saendee P, Rugmai S, Cheevasrirungruang W (2014) Ind Eng Chem Res 53:2331–2339

  31. Byelov D, Panine P, Remerie K, Biemond E, Alfonso GC, Jeu WH (2008) Polymer 49:3076–3083

  32. Sanguansat P, Amornsakchai T (2015) J Polym Res 22:30. doi:10.1007/s10965-015-0676-8

  33. Li, XY, Liu, YP, Tian, XY, Cui KP (2016) J Polym Sci Pol Phys 54:1573–1580

  34. Tabatabaei SH, Carreau PJ, Ajji A (2009) Polymer 50:4228–4240

  35. Sun YS (2006) Polymer 47:8032–8043

  36. Strobl GR, Schneider M (1980) J Polym Sci: Polym Phys Ed 18:1343–1359

  37. Strobl GR, Schneider M, Voigt-Martin IG (1980) J Polym Sci: Polym Phys Ed 18:1361–1381

  38. Dong M, Guo ZX, Yu J, Su ZQ (2009) J Polym Sci Pol Phys 47:314–325

  39. Haese MD, Langouche F, Puyvelde PV (2013) Macromolecules 46:3425–3424

  40. Wu Y, Hsu SL (2012) J Phys Chem B 116:7379–7388

Download references

Acknowledgments

The work was financially supported by National Natural Science Foundation of China (51263003) and the Science and Technological Project of Guizhou Province ([2015]3008), And we gratefully acknowledge Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yu or Jingbo Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L., He, W., Li, J. et al. Joint effects of molecular structure and crystal morphology of organophosphate monovalent salts on nucleated isotactic poly(propylene). J Polym Res 23, 206 (2016). https://doi.org/10.1007/s10965-016-1102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1102-6

Keywords

Navigation