Skip to main content
Log in

Effect of the lanthanum and cerium phenylphosphonates on the crystallization and mechanical properties of isotactic polypropylene

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this article, the lanthanum phenylphosphonates (LaPPA2) and cerium phenylphosphonates (CePPA2) were synthesized and the effect on the crystallization conducts and mechanical performances of isotactic polypropylene (iPP) were studied. After adding 0.05wt% of LaPPA2 and CePPA2, the crystallization temperature enhanced appreciably. The polarized optical microscopy (POM) imagines indicated that the LaPPA2 and CePPA2 could accelerate the crystallization speed and reduce the spherulites sizes significantly. The presence of LaPPA2 and CePPA2 decreased appreciably the non-isothermal crystallization kinetics parameter F(T). Meanwhile, the nucleation efficiency of LaPPA2 and CePPA2 was similar to industrial standard NAs NA-11, HPN20E and HPN68L. In addition, the mechanical properties of iPP have been improved by adding LaPPA2 and CePPA2. According to the investigation of nucleated iPP viscoelasticity, it can be confirmed that the CH/π interplay between iPP and the aromatic groups of LaPPA2 and CePPA2 promoted the attachment of iPP helix and following nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang Q, Undrell JP, Gao Y, Cai G, Buffet JC, Wilkie CA, O’Hare D (2013) Synthesis of Flame-Retardant Polypropylene/LDH-Borate Nanocomposites. Macromolecules 46(15):6145–6150

    Article  CAS  Google Scholar 

  2. Zhang G, Brannum D, Dong D, Tang L, Allahyarov E, Tang S, Kodweis K, Lee JK, Zhu L (2016) Interfacial Polarization-Induced Loss Mechanisms in Polypropylene/BaTiO3 Nanocomposite Dielectrics. Chem Mater 28(13):4646–4660

    Article  CAS  Google Scholar 

  3. Cho S, Kim M, Lee JS, Jang J (2015) Polypropylene/Polyaniline Nanofiber/Reduced Graphene Oxide Nanocomposite with Enhanced Electrical, Dielectric, and Ferroelectric Properties for a High Energy Density Capacitor. ACS Appl Mater Interfaces 7(40):2230–22314

    Article  Google Scholar 

  4. Kristiansen M, Theo Tervoort A, Smith P, Han G (2005) Mechanical Properties of Sorbitol-Clarified Isotactic Polypropylene: Influence of Additive Concentration on Polymer Structure and Yield Behavior. Macromolecules 38(25):1532–1532

    Article  Google Scholar 

  5. Blomenhofer M, Ganzleben S, Doris Hanft A, Schmidt HW, MK, Smith P, Stoll K, Dietmar Mäder A, Hoffmann K, (2005) Designer. Nucleating Agents for Polypropylene Macromolecules 38(9):3688–3695

    CAS  Google Scholar 

  6. Chen L, Yang Y, Xin Z, Qin W, Zhou S, Zhao S (2019) Increased nucleation efficiency of an in situ-formed beta-nucleating agent for impact polypropylene copolymer. J Polymer Res 26 (10). https://doi.org/10.1007/s10965-019-1908

  7. Bhatia A, Jayaratne VN, Simon GP, Edward GH, Turney TW (2015) Nucleation of isotactic polypropylene with metal monoglycerolates. Polymer 59:110–116. https://doi.org/10.1016/j.polymer.2014.12.038

    Article  CAS  Google Scholar 

  8. Mani MR, Chellaswamy R, Marathe YN, Pillai VK (2015) The role of the molecular structure of carboxylate-alumoxanes in the enhanced nucleation of polypropylene. Chem Commun 51(49):10026–10029

    Article  CAS  Google Scholar 

  9. Nagendra B, Mohan K, Gowd EB (2015) Polypropylene/Layered Double Hydroxide (LDH) Nanocomposites: Influence of LDH Particle Size on the Crystallization Behavior of Polypropylene. ACS Appl Mater Interfaces 7(23):12399–12410

    Article  CAS  Google Scholar 

  10. Mani MR, Chellaswamy R, Marathe YN, Pillai VK (2016) New Understanding on Regulating the Crystallization and Morphology of the β-Polymorph of Isotactic Polypropylene Based on Carboxylate-Alumoxane Nucleating Agents. Macromolecules 49(6):2197–2205. https://doi.org/10.1021/acs.macromol.5b02466

    Article  CAS  Google Scholar 

  11. Mani MR, Chellaswamy R, Marathe YN, Pillai VK (2016) Enhanced nucleation of polypropylene by metal organic frameworks (MOFs) based on aluminium dicarboxylates: Influence of structural features. Rsc Advances 6(3):1907–1912

    Article  CAS  Google Scholar 

  12. Yang R, Ding L, Chen W, Chen L, Zhang X, Li J (2017) Chain Folding in Main-Chain Liquid Crystalline Polyester with Strong π–π Interaction: An Efficient β-Nucleating Agent for Isotactic Polypropylene. Macromolecules 50(4):1610–1617

    Article  CAS  Google Scholar 

  13. Deshmukh YS, Wilsens CHRM, Leone N, Portale G, Harings JAW, Rastogi S (2016) Melt-miscible oxalamide based nucleating agents and their nucleation efficiency in isotactic polypropylene. Ind Eng Chem Res 55(45):11756–11766

    Article  CAS  Google Scholar 

  14. Jiang X, Zhang W, Zhao S, Zhou S, Shi Y, Xin Z (2018) Effect of benzoic acid surface modified alumina nanoparticles on the mechanical properties and crystallization behavior of isotactic polypropylene nanocomposites. RSC Advances 8(37):20790–20800. https://doi.org/10.1039/C8RA01069B

    Article  CAS  Google Scholar 

  15. He Z, Zhang Y-F, Li Y (2020) Dependence of beta-crystal formation of isotactic polypropylene on crystallization conditions. J Polymer Res 27 (9). https://doi.org/10.1007/s10965-020-02241-y

  16. Liu X, Liu X, Li Y, Zhang Y, Xie X, Li K, Chen Z, Zhang L, Tang Z, Liu Z (2020) Nanoengineering of transparent polypropylene containing sorbitol-based clarifier. J Polymer Res 27 (8). https://doi.org/10.1007/s10965-020-02169-3

  17. Lin XB, Du SL, Long JW, Chen L, Wang YZ (2015) A Novel Organophosphorus Hybrid with Excellent Thermal Stability: Core-Shell Structure, Hybridization Mechanism, and Application in Flame Retarding Semi-Aromatic Polyamide. ACS Appl Mater Interfaces 8(1):881–890

    Article  Google Scholar 

  18. Ma J, Yang J, Huang Y, Cao K (2012) Aluminum–organophosphorus hybrid nanorods for simultaneously enhancing the flame retardancy and mechanical properties of epoxy resin. J Mater Chem 22(5):2007–2017

    Article  CAS  Google Scholar 

  19. Wang J, Yuan B, Mu X, Feng X, Tai Q, Hu Y (2017) Two-dimensional metal phenylphosphonates as novel flame retardants for polystyrene. Ind Eng Chem Res 56(25):7192–7206

    Article  CAS  Google Scholar 

  20. Pan P, Liang Z, Cao A, Inoue Y (2009) Layered Metal Phosphonate Reinforced Poly(l-lactide) Composites with a Highly Enhanced Crystallization Rate. ACS Appl Mater Interfaces 1(2):402–411

    Article  CAS  Google Scholar 

  21. Chen Y, Wang S, Chen Q, Xi Z, Wang C, Chen X, Feng X, Liang R, Yang J (2015) Modulated crystallization behavior, polymorphic crystalline structure and enzymatic degradation of poly(butylene adipate): Effects of layered metal phosphonate. Eur Polymer J 72:222–237

    Article  CAS  Google Scholar 

  22. Smith TL, Masilamani D, Long KB, Khanna YP, Bray RG, Hammond WB, Curran S, Belles JJ, Bindercastelli S (1994) The Mechanism of Action of Sugar Acetals as Nucleating Agents for Polypropylene. Macromolecules 27(12):3147–3155

    Article  CAS  Google Scholar 

  23. H Er 1997 Adsorption as a mechanism for nucleating activity: A thermodynamic explanation J Polym Sci, Part B: Polym Phys 35 9 1333 1338.

  24. Xu T, Wang Y, He D, Xu Y, Li Q, Shen C (2014) Nucleation effect of layered metal phosphonate on crystallization of isotactic polypropylene. Polym Testing 34(4):131–139

    Article  Google Scholar 

  25. Jiang X, Zhao S, Meng X, Xin Z (2019) Effect of the Metal Phenylphosphonates on the Nonisothermal Crystallization and Performance of Isotactic Polypropylene. J Polym Sci, Part B: Polym Phys 57(3):161–173

    Google Scholar 

  26. Ran S, Ye R, Cai Y, Shen H, He Y, Fang Z, Guo Z (2019) Synergistic flame retardant mechanism of lanthanum phenylphosphonate and decabromodiphenyl oxide in polycarbonate. Polym Compos 40(3):986–999

    Article  CAS  Google Scholar 

  27. Tao Z, Wu T, Xiang H, Li Z, Xu Z, Kong Q, Zhang J, Zhi L, Pan Y, Wang D (2018) Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS. J Therm Anal Calorim 1–8

  28. Chao C, Guo Z, Ran S, Fang Z (2014) Synthesis of Cerium Phenylphosphonate and Its Synergistic Flame Retardant Effect with Decabromodiphenyl Oxide in Glass-Fiber Reinforced Poly(Ethylene Terephthalate). Polym Compos 35(3):539–547

    Article  Google Scholar 

  29. Cai Y, Guo Z, Fang Z, Cao Z (2013) Effects of layered lanthanum phenylphosphonate on flame retardancy of glass-fiber reinforced poly (ethylene terephthalate) nanocomposites. Appl Clay Sci 77:10–17

    Article  Google Scholar 

  30. Wang RC, Zhang Y, Hu H, Frausto RR, Clearfield A (1992) Preparation of Lanthanoid Arylphosphonates and Crystal Structures of Lanthanum Phenyl- and Benzylphosphonates. Chem Mater 4(4):864–871

    Article  CAS  Google Scholar 

  31. Di W, Ferreira RA, Willinger M-G, Ren X, Pinna N (2010) Enhanced photoluminescence features of rare earth phenylphosphonate hybrid nanostructures synthesized under nonaqueous conditions. J Phys Chem C 114(14):6290–6297

    Article  CAS  Google Scholar 

  32. Nagendra B, Rosely CVS, Leuteritz A, Reuter U, Gowd EB (2017) Polypropylene/Layered Double Hydroxide Nanocomposites: Influence of LDH Intralayer Metal Constituents on the Properties of Polypropylene. ACS Omega 2(1):20–31

    Article  CAS  Google Scholar 

  33. Nagendra B, Joseph AM, Sana B, Jana T, Gowd EB (2017) Layered Double Hydroxide Nanoplatelets with Ultra High Specific Surface Area for Significantly Enhanced Crystallization Rate and Thermal Stability of Polypropylene. ACS Applied Nano Materials 1(1):111–121

    Article  Google Scholar 

  34. Zhao S, Cai Z, Xin Z (2008) A highly active novel β-nucleating agent for isotactic polypropylene. Polymer 49(11):2745–2754. https://doi.org/10.1016/j.polymer.2008.04.012

    Article  CAS  Google Scholar 

  35. Wang J, Yang J, Deng L, Fang H, Zhang Y, Wang Z (2015) More Dominant Shear Flow Effect Assisted by Added Carbon Nanotubes on Crystallization Kinetics of Isotactic Polypropylene in Nanocomposites. ACS Appl Mater Interfaces 7(2):1364–1375

    Article  CAS  Google Scholar 

  36. Fillon B, Wittmann JC, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci, Part B: Polym Phys 31(10):1383–1393

    Article  CAS  Google Scholar 

  37. Meng X, Gong W, Chen W, Shi Y, Sheng Y, Zhu S, Xin Z (2018) Isothermal and non-isothermal crystallization of isotactic polypropylene in the presence of an α nucleating agent and zeolite 13X. Thermochimica Acta

  38. Naffakh M, Remškar M, Marco C, Gómezfatou MA (2011) Dynamic Crystallization Kinetics and Nucleation Parameters of a New Generation of Nanocomposites Based on Isotactic Polypropylene and MoS2 Inorganic Nanotubes. J Phys Chem B 115(12):2850–2856

    Article  CAS  Google Scholar 

  39. Yang R, Ding L, Zhang X, Li J (2018) Nonisothermal Crystallization, Melting Behaviors, and Mechanical Properties of Isotactic Polypropylene Nucleated with a Liquid Crystalline Polymer. Ind Eng Chem Res 57(6):2083–2093. https://doi.org/10.1021/acs.iecr.7b04115

    Article  CAS  Google Scholar 

  40. An Y, Dong L, Li L, Mo Z, Feng Z (1999) Isothermal crystallization kinetics and melting behavior of poly( β -hydroxybutyrate)/poly(vinyl acetate) blends. J Polym Sci, Part B: Polym Phys 35(3):365–369

    CAS  Google Scholar 

  41. Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-Cryst Solids 162 (1):13–25. https://doi.org/10.1016/0022-3093(93)90737-I

  42. D’Haese M, Langouche F, Puyvelde PV (2013) On the Effect of Particle Size, Shape, Concentration, and Aggregation on the Flow-Induced Crystallization of Polymers. Macromolecules 46(9):3425–3434

    Article  Google Scholar 

  43. Xu W, Ge M, He P (2002) Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci, Part B: Polym Phys 40(5):408–414

    Article  CAS  Google Scholar 

  44. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010

    Article  CAS  Google Scholar 

  45. Baskaran D, Mays JW, Bratcher MS (2005) Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem Mater 17(13):3389–3397

    Article  CAS  Google Scholar 

  46. Beigbeder A, Linares M, Devalckenaere M, Degée P, Claes M, Beljonne D, Lazzaroni R, Dubois P (2008) CH-π Interactions as the Driving Force for Silicone-Based Nanocomposites with Exceptional Properties. Adv Mater 20(5):1003–1007

    Article  CAS  Google Scholar 

  47. Yamate T, Kumazawa K, Suzuki H, Akazome M (2016) CH/π Interactions for Macroscopic Interfacial Adhesion Design. ACS Macro Letters 5(7):858–861

    Article  CAS  Google Scholar 

  48. Wang PH, Ghoshal S, Gulgunje P, Verghese N, Kumar S (2016) Polypropylene nanocomposites with polymer coated multiwall carbon nanotubes. Polymer 100:244–258

    Article  CAS  Google Scholar 

  49. Lu K, Grossiord N, Koning CE, Miltner HE, Bv M, Loos J (2008) Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation. Macromolecules 41(21):8081–8085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by National Natural Science Foundation of China (Grants 21606084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicheng Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4345 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jiang, X., Qin, W. et al. Effect of the lanthanum and cerium phenylphosphonates on the crystallization and mechanical properties of isotactic polypropylene. J Polym Res 28, 124 (2021). https://doi.org/10.1007/s10965-021-02486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02486-1

Keywords

Navigation