Skip to main content

Differential Scanning Thermal Analysis of Shape-Memory Polymers, Polymer Blends and Composites

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

Calorimetry is the primary technique for measuring the thermal properties of materials. From calorimetric methods, it is possible to perform a correlation between temperature, structure, and the physicochemical properties of the materials. The differential scanning calorimeter (DSC) is one of the most common methods used to determine the thermal properties in polymeric materials. To determine the thermal properties of thermally activated polymeric materials is fundamental for the development of the programming cycle of these materials. This chapter presents a brief discussion about the application of the DSC in determining the thermal transitions of the materials and its correlation with the structure and memory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A 40:1661–1672

    Article  Google Scholar 

  2. Xie T, Xiao X, Cheng YT (2009) Revealing triple-shape memory effect by polymer bilayers. Macromol Rapid Commun 30:1823–1827

    Article  Google Scholar 

  3. Behl M, Lendlein A (2007) Shape memory polymers. Mater Today 10(4):20–28

    Article  Google Scholar 

  4. Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50:1852–1856

    Article  Google Scholar 

  5. Mondal S, Hu JL (2006) Segmented shape memory polyurethane and its water vapor transport properties. Des Monomers Polym 9(9):527–550

    Article  Google Scholar 

  6. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  7. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem (17):1543–1548

    Article  Google Scholar 

  8. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    Article  Google Scholar 

  9. Pereira IM, Oréfice RL (2010) In situ evaluation of structural changes in poly(ester-urethanes) during shape-memory cycles. Polymer (Guildford) 51(8):1744–1751

    Article  Google Scholar 

  10. Martins GS, Pereira IM, Hoehne NML, Oréfice RL (2017) Influence of aqueous dispersions in place of organic solvents during the synthesis of shape memory polyurethanes on their structure and properties. Polym Eng Sci 57(4):432–440

    Article  Google Scholar 

  11. Pereira IM, Oréfice RL (2009) The morphology and phase mixing studies on poly(ester-urethane) during shape memory cycle. J Mater Sci 45:511–522

    Article  Google Scholar 

  12. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34:6431–6437

    Article  Google Scholar 

  13. Zhuohong Y, Jinlian H, Yeqiu L, Lapyan Y (2006) The study of crosslinked shape memory polyurethanes. Mater Chem Phys 98(2):368–372

    Article  Google Scholar 

  14. Yang B, Huang WM, Li C, Lee CM, Li L (2004) On the effects of moisture in a polyurethane shape memory polymer. Smart Mater Struct 13(1):191–198

    Article  Google Scholar 

  15. Pandini S, Passera S, Messori M, Paderni K, Toselli M, Gianoncelli A, Bontempi E, Riccò T (2012) Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 53:1915–1924

    Article  Google Scholar 

  16. Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270

    Article  Google Scholar 

  17. Basit A, L’Hostis G, Durand B (2012) Multi-shape memory effect in shape memory polymer composites. Mater Lett 74:220–222

    Article  Google Scholar 

  18. Bellin I, Kelch S, Langer R, Lendlein A (2006) Polymeric triple-shape materials. Proc Natl Acad Sci USA 103:18043–18047

    Article  Google Scholar 

  19. Sohel A, Mandal A, Mondal A, Pan S (2017) Thermal analysis of ABS/PA6 polymer blend using differential scanning calorimetry. J Therm Anal Calorim 129:1689–1695

    Article  Google Scholar 

  20. Sohel MA, Mandal A, Mondal A, Pan S, SenGupta A (2018) Calorimetric analysis of uncompatibilized polypropylene/polystyrene blend using DSC. In: Macromolecular symposia, vol 379, pp 1–4

    Article  Google Scholar 

  21. Martins GS, Pereira IM, Oréfice RL (2018) Toughening brittle polymers with shape memory polymers. Polymer 135:30–38

    Article  Google Scholar 

  22. Grassi VG, Pizzol MV (2008) Morphological characterization of high impact polystyrene (HIPS). Polímeros 18(1):12–19

    Article  Google Scholar 

  23. Araújo ME, Carvalho LH, Fook MVL, Almeida JMD (1997) Propriedades Mecânicas de blendas de PS/Resíduo de Borracha - Influência da Concentração, Granulometria e Método de Moldagem. Polímeros: Ciência e Tecnologia 45–52

    Article  Google Scholar 

  24. Liu NC, Baker WE (1992) Reactive polymers for blend compatibilization. Polym Technol 11:249–262

    Article  Google Scholar 

  25. Song M, Liao B (2004) A modulated DSC characterization of morphology of composite latex particles. Thermochim Acta 423:57–61

    Article  Google Scholar 

  26. Song M, Hourston DJ, Schafer F-U, Pollock HM, Hammiche A (1998) Modulated differential scanning calorimetry: XVI. Degree of mixing in interpenetrating polymer networks. Thermochim Acta 315(1):25–32

    Article  Google Scholar 

  27. Wang Y, Zhang L, Zhou S, Huang D, Morsi Y, Gao S, Gong M, Li Y (2011) Investigation of nonisothermal crystallization of hydroxyapatite/ethylene-vinyl acetate (HA/EVA) composite. J Appl Polym Sci

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Siniscalchi Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martins, G.S. (2020). Differential Scanning Thermal Analysis of Shape-Memory Polymers, Polymer Blends and Composites. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics