Skip to main content
Log in

Free-standing nanocrystalline-Cadmium sulfide/Polyvinylidene fluoride composite thin film: synthesis and characterization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Nanocrystalline Cadmium sulfide (CdS) impregnated polyvinylidene fluoride (PVDF) composite free-standing flexible films were prepared by sol–gel technique. The films were poled in vacuum under high electric field. Effect of CdS loading in PVDF host matrix on the optical properties was studied critically for the as-deposited and poled samples. The reduction in the relative intensities of the peaks arising out of α -PVDF as compared to that of β-PVDF for the poled samples was observed in X-ray diffraction (XRD) studies. This type of observation indicates a possible transition from α to β phase due to poling. Modulation of optical and microstructural properties with CdS loading was also addressed. Bonding environment was studied by X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy measurements. XPS studies indicated the presence of highly aligned CdS nanocrystallites in the poled PVDF matrix which may effectively modulate the piezoelectric behavior of the composite film. The Photoluminescence (PL) spectra recorded as above for a representative unpoled and poled nano-CdS/PVDF composite film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gregorio R Jr, Capitao RC (2000) J Mater Sci 35:299–306

    Article  CAS  Google Scholar 

  2. Drean E, Schacher L, Adolphe D, Bauer F (2007) Smart Textiles for Automotive: application to Airbag Development. In 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), Volume 13 Berlin-Heidelberg: Aachen, Germany, Leonhardt T, Falck P. Mähönen (Ed); Springer: Germany, pp. 155–160.

  3. Moussaif N, Pagnoulle C, Riga J, Jérôme R (2000) Polymer 41:3391–3394

    Article  CAS  Google Scholar 

  4. Salimi A, Yousefi AA (2003) Polym Test 22:699–704

    Article  CAS  Google Scholar 

  5. Bormashenko Y, Pogreb R, Stanevsky O, Bormashenko E (2004) Polym Test 23:791–796

    Article  CAS  Google Scholar 

  6. Vacche S, Oliveira F, Leterrier Y, Michaud V, Damjanovic D, Månson JA (2012) J Mater Sci 47:4763–4774

    Article  Google Scholar 

  7. Fang DN, Soh AK, Li CQ, Jiang B (2001) J Mater Sci 36:5281–5288

    Article  CAS  Google Scholar 

  8. Dietze M, Es-Souni M (2008) Sensors Actuators A Phys 143:329–334

    Article  CAS  Google Scholar 

  9. Ploss B, Ploss B, Shin G, Chan HLW, Choy CL (2000) Appl Phys Lett 76:2776–2778

    Article  CAS  Google Scholar 

  10. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ, Loye HCZ (2009) Materials 2:1697–1733

    Article  CAS  Google Scholar 

  11. Lonjon A, Demont P, Dantras E, Lacabanne C (2012) J Non-Cryst Solids 358:236–240

    Article  CAS  Google Scholar 

  12. Fang F, Yang W, Zhang MZ, Wang Z (2009) Compos Sci Technol 69:602–605

    Article  CAS  Google Scholar 

  13. Wang Z, Fan H, Su K, Wen Z (2006) Polymer 47:7988–7996

    Article  CAS  Google Scholar 

  14. Wang W, Fan H, Ye Y (2010) Polymer 51:3575–3581

    Article  CAS  Google Scholar 

  15. Wang W, Fan H (2010) Ferroelectrics 409(1):41–44

    Article  CAS  Google Scholar 

  16. Nguyen VS, Rouxel D, Vincent B, Badie L, Santos FDD, Lamouroux E, Fort Y (2013) Appl Surf Sci 279:204–211

    Article  CAS  Google Scholar 

  17. Hong J, He Y (2012) Desalination 302:71–79

    Article  CAS  Google Scholar 

  18. Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL (2000) Chem Mater 12:2268–2274

    Article  CAS  Google Scholar 

  19. Devi PI, Ramachandran K (2011) J Exp Nanosci 6:281–293

    Article  CAS  Google Scholar 

  20. Wang ZL (2012) MRS Bull 37:814–827

    Article  CAS  Google Scholar 

  21. Shvydka D, Drayton J, Compaan AD, Karpov VG (2005) Appl Phys Lett 87:123505 pp 1–3

  22. Weng C-C, Wei K-H (2003) Chem Mater 15:2936–2941

    Article  CAS  Google Scholar 

  23. Yeh S-W, Wei K-H (2005) Macromolecules 38:6559–6565

    Article  CAS  Google Scholar 

  24. Yeh S-W, Wei K-H (2003) Macromolecules 36:7903–7907

    Article  CAS  Google Scholar 

  25. Wang Q, Jiang S, Zhang Y, Zhang G, Xiong L (2011) Polym Bull 66:821–830

    Article  CAS  Google Scholar 

  26. Senthil K, Mangalaraj D, Narayandass SK, Kesavamoorthy R, Reddy GLN (2001) Nucl Inst Methods Phys Res B 173:475–482

    Article  CAS  Google Scholar 

  27. Sim LN, Majid SR, Arof AK (2012) Vib Spectrosc 58:57–66

    Article  CAS  Google Scholar 

  28. Fadaei A, Salimi A, Mirzataheri M (2014) J Polym Res 21(545):1–8

    CAS  Google Scholar 

  29. Li H, Shi W, Zhang Y, Zhou R (2015) J Polym Res 22(8):1–14

    Article  Google Scholar 

  30. Paul R, Sharma MK, Chatterjee R, Hussain S, Bhar R, Pal AK (2012) Appl Surf Sci 258:5850–5857

    Article  CAS  Google Scholar 

  31. Paul R, Hussain S, Majumder S, Verma S, Pal AK (2009) Mater Sci Eng B 164:156–164

    Article  CAS  Google Scholar 

  32. Gupta S, Roy RK, Deb B, Kundu S, Pal AK (2003) Mater Lett 57:3479–3485

    Article  CAS  Google Scholar 

  33. Manifacier JC, Murcia MD, Fillard JP, Vicario E (1977) Thin Solid Films 41:127–135

    Article  CAS  Google Scholar 

  34. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall Inc, Englewood Cliffs, p 92

    Google Scholar 

  35. Bhattacharya D, Chaudhuri S, Pal AK (1992) Vacuum 43:313–316

    Article  Google Scholar 

  36. Xue SW, Zu XT, Zheng WG, Deng HX, Xiang X (2006) Phys B Condens Matter 381:209–213

    Article  CAS  Google Scholar 

  37. Bhattacharyya SR, Gayen RN, Paul R, Pal AK (2009) Thin Solid Films 517:5530–5536

    Article  CAS  Google Scholar 

  38. Ferry DK (1995) Semiconductors, Chapter 5, McMillan, New York.

Download references

Acknowledgments

The authors wish to thank Board of Research in Nuclear Sciences, Government of India for the financial assistance to carry out this research programme. RB wishes to thank the Jadavpur University while DG and BG wish to thank the Department of Science and Technology, Government of India and University Grants Commission-Department of Atomic Energy Consortium for Scientific Research, respectively to support their fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, R., Ghosh, B., Ghosh, D. et al. Free-standing nanocrystalline-Cadmium sulfide/Polyvinylidene fluoride composite thin film: synthesis and characterization. J Polym Res 22, 71 (2015). https://doi.org/10.1007/s10965-015-0712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0712-8

Keywords

Navigation