Skip to main content
Log in

The effect of processing conditions on the morphology, thermomechanical, dielectric, and piezoelectric properties of P(VDF-TrFE)/BaTiO3 composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study (0–3) P(VDF-TrFE)/BaTiO3 composites containing up to 60 vol% of ceramic phase were prepared by solvent casting or compression molding. Their thermomechanical, dielectric, and piezoelectric properties were investigated, and discussed in the light of the properties of the basic components, the processing route and the resulting morphology. The crystalline structure of the P(VDF-TrFE) matrix was found to be highly dependent on the processing route, while the structure of BaTiO3 was not affected by any of the processing steps. The mechanical properties of the solvent cast materials showed a maximum at 30 vol% BaTiO3, while they increased monotonically with BaTiO3 content for compression molded materials. This difference was attributed to a higher amount of porosity and inhomogeneities in the solvent cast composites. Permittivity as high as 120 and piezoelectric coefficient d 33 up to 32 pC/N were obtained for compression molded composites, and the observed decrease in d 33 with aging time was attributed to the effect of mechanical stress release in the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dias CJ, Dasgupta DK (1994) In: Ferroelectric polymers and ceramic-polymer composites. Key engineering materials, vol 92–9. Trans Tech Publications, Clausthal Zellerfe, p 217

  2. Akdogan EK, Allahverdi M, Safari A (2005) IEEE Trans Ultrason Ferroelectr Freq Control 52(5):746

    Article  Google Scholar 

  3. Newnham RE, Skinner DP, Cross LE (1978) Mater Res Bull 13(5):525

    Article  CAS  Google Scholar 

  4. Han KH, Safari A, Riman RE (1991) J Am Ceram Soc 74(7):1699

    Article  CAS  Google Scholar 

  5. Sa-Gong C, Safari A, Newnham RE (1986) In: IEEE proceedings of the 6th international symposium on applications of ferroelectrics, Bethlehem, p 281. doi:10.1109/ISAF.1986.201142

  6. Yamamoto T, Urabe K, Banno H (1993) Jpn J Appl Phys 32:4272

    Article  CAS  Google Scholar 

  7. Chau KH, Wong YW, Shin FG (2007) Appl Phys Lett 91(25):3. doi:10.1063/1.2827571

    Article  Google Scholar 

  8. Capsal JF, Dantras E, Dandurand J, Lacabanne C (2006) J Non-Cryst Solids 353:4437. doi:10.1016/j.jnoncrysol.2007.01.097

    Article  Google Scholar 

  9. Petchsuk A, Supmak W, Thanaboonsombut A (2009) J Appl Polym Sci 114(2):1048. doi:10.1002/app.30636

    Article  CAS  Google Scholar 

  10. Ploss B, Ng W-Y, Chan HL-W, Ploss B, Choy C-L (2001) Compos Sci Technol 61(7):957

    Article  CAS  Google Scholar 

  11. Ploss B, Shin FG, Chan HLW, Choy CL (2000) IEEE Trans Dielectr Electr Insul 7(4):517

    Article  CAS  Google Scholar 

  12. Chan HLW, Ng PKL, Choy CL (1999) Appl Phys Lett 74(20):3029

    Article  CAS  Google Scholar 

  13. Zeng R, Kwok KW, Chan HLW, Choy CL (2002) J Appl Phys 92(5):2674. doi:10.1063/1.1497699

    Article  CAS  Google Scholar 

  14. Helke G, Lubitz K (2008) In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology. Springer series in materials science, vol 114. Springer, Berlin, p 89

    Google Scholar 

  15. Chen XD, Yang DB, Jiang YD, Wu ZM, Li D, Gou FJ, Yang JD (1998) Sens Actuators, A 65(2–3):194

    Google Scholar 

  16. Yao JL, Xiong CX, Dong LJ, Chen C, Lei YA, Chen L, Li R, Zhu QM, Liu XF (2009) J Mater Chem 19(18):2817. doi:10.1039/b819910h

    Article  CAS  Google Scholar 

  17. Kerimov MK, Kurbanov MA, Musaeva SN, Geidarov GM, Aliev GG (2009) Tech Phys Lett 35(2):166. doi:10.1134/s1063785009020205

    Article  CAS  Google Scholar 

  18. Panda PK (2009) J Mater Sci 44(19):5049. doi:10.1007/s10853-009-3643-0

    Article  CAS  Google Scholar 

  19. Karaki T, Yan K, Miyamoto T, Adachi M (2007) Jpn J Appl Phys 46(4):L97. doi:10.1143/jjap.46.l97

    Article  CAS  Google Scholar 

  20. Xu JW, Moon KS, Pramanik P, Bhattacharya S, Wong CP (2007) IEEE Trans Compon Packag Technol 30(2):248. doi:10.1109/tcapt.2007.898352

    Article  CAS  Google Scholar 

  21. Dang ZM, Wang HY, Xu HP (2006) Appl Phys Lett 89(11):3. doi:10.1063/1.2338529

    Article  Google Scholar 

  22. Dang ZM, Xu HP, Wang HY (2007) Appl Phys Lett 90(1):3. doi:10.1063/1.2393150

    Google Scholar 

  23. Dang Z-M, Yu Y-F, Xu H-P, Bai J (2008) Compos Sci Technol 68(1):171

    Article  CAS  Google Scholar 

  24. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li JY, Calame JP, Perry JW (2009) ACS Nano 3(9):2581. doi:10.1021/nn9006412

    Article  CAS  Google Scholar 

  25. Luo XT, Chen LF, Chen XJ, Huang QJ (2004) J Mater Sci Technol 20(4):441

    Article  CAS  Google Scholar 

  26. Chan HLW, Cheung MC, Choy CL (1999) Ferroelectrics 224(1–4):541

    CAS  Google Scholar 

  27. Patil R, Ashwin A, Radhakrishnan S (2007) Sens Actuators, A 138(2):361. doi:10.1016/j.sna.2007.05.025

    Article  Google Scholar 

  28. Muralidhar C, Pillai PKC (1986) IEEE Trans Electr Insul 21(3):501

    Article  Google Scholar 

  29. Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) J Phys D-Appl Phys 34(4):487

    Article  CAS  Google Scholar 

  30. Dietze M, Krause J, Solterbeck CH, Es-Souni M (2007) J Appl Phys 101: 054113. doi:10.1063/1.2653978

  31. Mao YP, Mao SY, Ye ZG, Xie ZX, Zheng LS (2010) J Appl Phys 108: 014102. doi:10.1063/1.3443582

  32. Lam KH, Wang XX, Chan HLW (2005) Compos A Appl Sci Manuf 36(11):1595. doi:10.1016/j.compositesa.2005.03.007

    Article  Google Scholar 

  33. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Prog Mater Sci 57(4):660

    Article  CAS  Google Scholar 

  34. Chanmal CV, Jog JP (2008) Express Polym Lett 2(4):294. doi:10.3144/expresspolymlett.2008.35

    Article  CAS  Google Scholar 

  35. Cheung MC, Chan HLW, Choy CL (2001) Ferroelectrics 264(1–4):1721

    Google Scholar 

  36. Dang ZM, Zheng Y, Xu HP (2008) J Appl Polym Sci 110(6):3473. doi:10.1002/app.28856

    Article  CAS  Google Scholar 

  37. Gregorio R, Cestari M, Bernardino FE (1996) J Mater Sci 31(11):2925. doi:10.1007/bf00356003

    Article  CAS  Google Scholar 

  38. Iijima M, Sato N, Wuled Lenggoro I, Kamiya H (2009) Colloids Surf A 352(1–3):88

    Article  CAS  Google Scholar 

  39. Muralidhar C, Pillai PKC (1989) Ferroelectrics 89:17

    Article  CAS  Google Scholar 

  40. Muralidhar C, Pillai PKC (1987) J Mater Sci Lett 6(3):346

    Article  CAS  Google Scholar 

  41. Patsidis A, Psarras GC (2008) Express Polym Lett 2(10):718. doi:10.3144/expresspolymlett.2008.85

    Article  CAS  Google Scholar 

  42. Ramajo L, Castro MS, Reboredo MM (2007) Compos A Appl Sci Manuf 38(8):1852

    Article  Google Scholar 

  43. Ramajo L, Reboredo M, Castro M (2005) Compos A Appl Sci Manuf 36(9):1267. doi:10.1016/j.compositesa.2005.01.026

    Article  Google Scholar 

  44. Kar-Gupta R, Venkatesh TA (2008) Acta Mater 56(15):3810

    Article  CAS  Google Scholar 

  45. Chandradass J, Bae DS (2008) Mater Manuf Processes 23(2):117. doi:10.1080/10426910701774320

    Google Scholar 

  46. Marra SP, Ramesh KT, Douglas AS (1999) The mechanical properties of lead-titanate/polymer 0–3 composites. Compos Sci Technol 59(14):2163

    Article  CAS  Google Scholar 

  47. Marra SP, Ramesh KT, Douglas AS (1999) Smart Mater Struct 8(1):57

    Article  CAS  Google Scholar 

  48. Dutta PK, Asiaie R, Akbar SA, Zhu W (1994) Chem Mater 6(9):1542. doi:10.1021/cm00045a011

    Article  CAS  Google Scholar 

  49. Baeten F, Derks B, Coppens W, van Kleef E (2006) J Eur Ceram Soc 26(4–5):589

    Article  CAS  Google Scholar 

  50. Lovinger AJ, Furukawa T, Davis GT, Broadhurst MG (1983) Polymer 24(10):1225

    Article  CAS  Google Scholar 

  51. Kodama H, Takahashi Y, Furukawa T (1997) Ferroelectrics 203(1):433

    Article  CAS  Google Scholar 

  52. Gregorio RJ, Botta MM (1998) J Polym Sci Part B 36(3):403

    Article  CAS  Google Scholar 

  53. Simoes R, Rodriguez-Perez M, De Saja J, Constantino C (2009) Polym Eng Sci 49(11):2150. doi:10.1002/pen.21455

    Article  CAS  Google Scholar 

  54. Yagi T, Tatemoto M, Sako J (1980) Polym J 12(4):209

    Article  CAS  Google Scholar 

  55. Sencadas V, Lanceros-Méndez S, Mano JF (2006) J Non-Cryst Solids 352(50–51):5376

    Article  CAS  Google Scholar 

  56. Zhang SH, Klein RJ, Ren KL, Chu BJ, Zhang X, Runt J, Zhang QM (2006) J Mater Sci 41(1):271. doi:10.1007/s10853-006-6081-2

    Article  CAS  Google Scholar 

  57. Hashin Z, Shtrikman S (1963) J Mech Phys Solids 11(2):127

    Article  Google Scholar 

  58. Dent AC, Bowen CR, Stevens R, Cain MG, Stewart M (2007) J Eur Ceram Soc 27(13–15):3739. doi:10.1016/j.jeurceramsoc.2007.02.031

    Article  CAS  Google Scholar 

  59. Tessier-Doyen N, Glandus JC, Huger M (2007) J Mater Sci 42(14):5826. doi:10.1007/s10853-006-1386-8

    Article  CAS  Google Scholar 

  60. Jayasundere N, Smith BV (1993) J Appl Phys 73(5):2462

    Article  Google Scholar 

  61. Kerner EH (1956) Proc Phys Soc B 69(8):802

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Swiss Federal Office of Energy (OFEN) and Swiss National Science Foundation (SNF) for funding, Solvay Solexis SpA for kindly providing P(VDF-TrFE) and for fruitful discussion, Li Jin for preparing the in house made BaTiO3 powder and Arthur Aebersold for technical support. The Laboratory of Powder Technology (LTP) and the Interdisciplinary Centre for Electron Microscopy (CIME) at EPFL are also acknowledged for support and access to their equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Leterrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacche, S.D., Oliveira, F., Leterrier, Y. et al. The effect of processing conditions on the morphology, thermomechanical, dielectric, and piezoelectric properties of P(VDF-TrFE)/BaTiO3 composites. J Mater Sci 47, 4763–4774 (2012). https://doi.org/10.1007/s10853-012-6362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6362-x

Keywords

Navigation