Skip to main content
Log in

Investigation of proton conductivity of inorganic–organic hybrid membranes based on boronic acid and tetrazole

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, proton conducting membranes based on 4-vinyl benzene boronic acid (VBBA) and 5-(methacrylamido) tetrazole (MTet) were synthesized, and their thermal, electrochemical and proton conducting properties were explored. 5-(methacrylamido) tetrazole (MTet) was copolymerized with 4-vinyl benzene boronic acid (VBBA) via conventional free radical copolymerization. The obtained copolymers, P(VBBA-co-MTet), were then doped with phosphoric acid (PA) to produce inorganic–organic hybrid proton conducting membranes. Structural analyses were carried out by Fourier Transform Infrared Spectroscopy (FTIR) and 1H-NMR (Nuclear Magnetic Resonance). The composition of the copolymers was determined by elemental analysis. Thermogravimetric Analysis (TGA) confirmed that the samples were thermally stable up to approximately 170 °C. The surface morphology was characterized by Scanning Electron Microscopy (SEM). Cyclic voltammetry (CV) results demonstrated that the oxidative stability of the samples is 3 V. In the absence of humidity, P(VBBA-co-MTet)-2H3PO4 (S3-2H3PO4) has a maximum proton conductivity of 0.021 Scm−1 at 150 °C. This value was higher than those of previously reported acid doped P(VBBA-co-VIm) and P(VBBA-co-VTri) membranes. Formation of highly conductive, flexible and insoluble free standing films indicates that the matrix has a potential to be used in proton exchange membrane fuel cells (PEMFC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2014) J Appl Polym Sci 131:3633–3642

    Google Scholar 

  2. Hazarika M, Jana T (2012) Appl Mater Interfaces 4:5256–5265

    Article  CAS  Google Scholar 

  3. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2014) Macromol Chem Phys 215:269–279

    Article  CAS  Google Scholar 

  4. Celik SU, Bozkurt A, Hosseini SS (2012) Prog Polym Sci Prog 37:1265–1291

    Article  CAS  Google Scholar 

  5. Yasuda T, Okimuro Y, Oishi A, Kokubo H, Watanabe M (2013) J Polym Sci Part A: Polym Chem 51:2233–3342

    Article  CAS  Google Scholar 

  6. Golcuk S, Muftuoglu AE, Celik SU, Bozkurt A (2013) J Polym Res 20:144

    Article  Google Scholar 

  7. Mikami T, Miyatake K, Watanabe M (2011) J Polym Sci Part A: Polym Chem 49:452–464

    Article  CAS  Google Scholar 

  8. Sasa D, Sinirlioglu D, Muftuoglu AE, Eren F, Celik SU, Bozkurt A (2013) J Polym Res 20:313

    Article  Google Scholar 

  9. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2013) J Polym Res 20:242

    Article  Google Scholar 

  10. Ng F, Peron J, Jones DJ, Roziere J (2011) J Polym Sci Part A: Polym Chem 49:2107–2117

    Article  CAS  Google Scholar 

  11. Roh DK, Ahn SH, Seo JA, Shul YG, Kim JH (2010) J Polym Sci Part B: Polym Phys 48:1110–1117

    Article  CAS  Google Scholar 

  12. Arslantas A, Sinirlioglu D, Eren F, Muftuoglu AE, Bozkurt A (2014) J Polym Res 21:437

    Article  Google Scholar 

  13. Sinirlioglu D, Muftuoglu AE, Golcuk K, Bozkurt A (2014) J Polym Sci Part A: Polym Chem 52:1885–1897

    Article  CAS  Google Scholar 

  14. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2014) Polym Eng Sci. doi:10.1002/pen.23890

    Google Scholar 

  15. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2014) J Macromol Sci Pure Appl Chem 51:420–434

    Article  CAS  Google Scholar 

  16. Ye S, Pu H, Wan D (2012) Polym Eng Sci 52:1450–1456

    Article  CAS  Google Scholar 

  17. Li S, Fried JR, Colebrook J (2013) Polym Eng Sci 53:597–608

    Article  CAS  Google Scholar 

  18. Pu HT, Meyer WH, Wegner G (2001) Macromol Chem Phys 202:1478–1482

    Article  CAS  Google Scholar 

  19. Kim JD, Mori T, Hayashi S, Honma I (2007) J Electrochem Soc 154:A290–A294

    Article  CAS  Google Scholar 

  20. Sen U, Bozkurt A, Ata A (2010) J Power Sources 195:7720–7726

    Article  CAS  Google Scholar 

  21. Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) Polym Compos 32:1625–1632

    Article  CAS  Google Scholar 

  22. Boroglu MS, Celik SU, Bozkurt A, Boz I (2013) Polym Eng Sci 53:153–158

    Article  CAS  Google Scholar 

  23. Aslan A, Bozkurt A (2009) J Power Sources 191:442–447

    Article  CAS  Google Scholar 

  24. Aslan A, Sen U, Bozkurt A (2009) J Electrochem Soc 156:B1112–B1116

    Article  CAS  Google Scholar 

  25. Aslan A, Bozkurt A (2011) Polym Bull 66:1099–1110

    Article  CAS  Google Scholar 

  26. Celik SU, Akbey U, Graf R, Bozkurt A, Spiess HW (2008) Phys Chem Chem Phys 10:6058–6066

    Article  CAS  Google Scholar 

  27. Celik SU, Bozkurt A (2010) Solid State Ionics 181:525–530

    Article  CAS  Google Scholar 

  28. Jain P, Choudhary V, Varma IK (2002) J Macromol Sci Polym Rev 42:139–183

    Article  Google Scholar 

  29. Cheng F, Jakle F (2011) Polym Chem 2:2122–2132

    Article  CAS  Google Scholar 

  30. Sacristan M, Ronda JC, Galia M, Cadiz V (2010) Polymer 51:6099–6106

    Article  CAS  Google Scholar 

  31. Cui C, Bonder EM, Qin Y, Jaekle F (2010) J Polym Sci Part A: Polym Chem 48:2438–2445

    Article  CAS  Google Scholar 

  32. Sezgin A, Akbey U, Hansen MR, Graf R, Bozkurt A, Baykal A (2008) Polymer 49:3859–3864

    Article  CAS  Google Scholar 

  33. Sezgin A, Akbey U, Graf R, Bozkurt A, Baykal A (2009) J Polym Sci Part B 47:1267–1274

    Article  CAS  Google Scholar 

  34. Celik SU, Bozkurt A (2013) J Inorg Organomet Polym 23:846–854

    Article  CAS  Google Scholar 

  35. Celik SU, Bozkurt A (2013) J Poly Res 20:63

    Article  Google Scholar 

  36. Celik SU, Bozkurt A (2013) Macromol Chem Phys 214:486–491

    Article  CAS  Google Scholar 

  37. Taden A, Tait AH, Kraft A (2002) J Polym Sci Part A: Polym Chem 40:4333–4343

    Article  CAS  Google Scholar 

  38. Celik SU, Bozkurt A (2013) Curr Appl Phys 13:1668–1673

    Article  Google Scholar 

  39. Pu HT, Wu J, Wan DC, Chang ZH (2008) J Membr Sci 322:392–399

    Article  CAS  Google Scholar 

  40. Kahraman G, Beskardes O, Rzaev ZMO, Piskin E (2004) Polymer 45:5813–5828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to convey thanks to Fatih University, Bio Nano Technology R&D Center for providing laboratory facilitates to measure SEM and XRD measurements. This work was supported by the Scientific Research Fund of Fatih University under the project number P50021303_B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinirlioglu, D., Muftuoglu, A.E. & Bozkurt, A. Investigation of proton conductivity of inorganic–organic hybrid membranes based on boronic acid and tetrazole. J Polym Res 21, 526 (2014). https://doi.org/10.1007/s10965-014-0526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0526-0

Keywords

Navigation