Skip to main content
Log in

Enhancing the Anhydrous Proton Conductivity of Boronic and Phosphonic Acid Functional Copolymers by Grafting With Flexible Spacers

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polymers comprised of phosphonic acid units are generally preferred for proton conducting membranes due to their high proton conductivity in humidified and anhydrous state. Polymers based on 4-vinylbenzene boronic acid and diisopropyl-p-vinylbenzyl phosphonate were synthesized and the phosphonate group was hydrolyzed. Boronic acid groups were grafted with polyethyleneglycol methyl ether (PEGME) to produce more flexible copolymers. The copolymerization and grafting reactions were verified by Fourier Transform infrared spectroscopy, thermogravimetric analysis and differential scanning calorimetry (DSC). The P content of the samples was analyzed with SEM–EDS. Thermograms indicate that the copolymers are thermally stable to 200 °C. In addition, grafting resulted in the inhibition of condensation of the acidic units. DSC results show that after grafting the copolymers have distinct melting temperatures corresponding to PEGME units, which are bound to the polymer. The ion exchange capacity and cyclic voltammetry of the copolymers results were measured. The proton conductivity of the copolymers was investigated in the anhydrous state. Although the copolymers have low proton conductivity (<10−10 S/cm), they reached a value of 1.6 × 10−6 S/cm after grafting with PEGME units. This demonstrated that the presence of flexible side units increased the proton conductivity at least five orders of magnitude. This idea can be used for designing the novel membranes for fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.Ü. Celik, A. Bozkurt, S.S. Hosseini, Prog. Polym. Sci. 37, 1265 (2012)

    Article  CAS  Google Scholar 

  2. C.L. Gardner, A.V. Anantaraman, J. Electroanal. Chem. 449, 209 (1998)

    Article  CAS  Google Scholar 

  3. H. Pu, Y. Qin, D. Wan, Z. Yang, Macromolecules 42, 3000 (2009)

    Article  CAS  Google Scholar 

  4. S.H. Kim, Y.C. Park, G.H. Jung, C.G. Cho, Macromol. Res. 15, 587 (2007)

    Article  CAS  Google Scholar 

  5. B.P. Tripathi, A. Saxena, V.K. Shahi, J. Membr. Sci. 318, 288 (2008)

    Article  CAS  Google Scholar 

  6. H.R. Allcock, M.A. Hofmann, C.M. Ambler, R.V. Morford, Macromolecules 34, 6915 (2001)

    Article  CAS  Google Scholar 

  7. A. Bozkurt, W.H. Meyer, J. Gutmann, G. Wegner, Solid State Ionics 164, 169 (2003)

    Article  CAS  Google Scholar 

  8. S.Ü. Çelik, Ü. Akbey, R. Graf, A. Bozkurt, H.W. Spiess, Phys. Chem. Chem. Phys. 10, 6058 (2008)

    Article  Google Scholar 

  9. P. Jain, V. Choudhary, I.K. Varma, J. Macromol. Sci. Polym. Rev. 42, 139 (2002)

    Article  Google Scholar 

  10. S.Y. Lu, I. Hamerton, Prog. Polym. Sci. 27, 1661 (2002)

    Article  CAS  Google Scholar 

  11. M. Sacristán, J.C. Ronda, M. Galià, V. Cádiz, Polymer 51, 6099 (2010)

    Article  Google Scholar 

  12. D. Roy, B.S. Sumerlin, ACS Macro Lett. 1, 529 (2012)

    Article  CAS  Google Scholar 

  13. J.P. Lorand, J.O. Edwards, J. Org. Chem. 24, 769 (1959)

    Article  CAS  Google Scholar 

  14. C. Cui, E.M. Bonder, Y. Qin, F. Jaekle, J. Polym. Sci. Part A 48, 2438 (2010)

    Article  CAS  Google Scholar 

  15. A. Sezgin, Ü. Akbey, M.R. Hansen, R. Graf, A. Bozkurt, A. Baykal, Polymer 49, 3859 (2008)

    Article  CAS  Google Scholar 

  16. A. Sezgin, Ü. Akbey, R. Graf, A. Bozkurt, A. Baykal, J. Polym. Sci. Part B 47, 1267 (2009)

    Article  CAS  Google Scholar 

  17. S.P. Brown, I. Schnell, J.D. Brand, K. Mullen, H.W. Spiess, J. Am. Chem. Soc. 121, 6712 (1999)

    Article  CAS  Google Scholar 

  18. S.U. Celik, A. Bozkurt, Solid State Ionics 181, 987 (2010)

    Article  CAS  Google Scholar 

  19. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Mater. Chem. Phy. 115, 57 (2009)

    Article  Google Scholar 

  20. P.S. Anantha, K. Hariharan, Mater. Chem. Phy. 89, 428 (2005)

    Article  CAS  Google Scholar 

  21. G. Scharfenberger, W.H. Meyer, G. Wegner, M. Schuster, K.D. Kreuer, J. Maier, Fuel Cells 3–4, 237 (2006)

    Article  Google Scholar 

  22. J.C. Persson, P. Jannasch, Chem. Mater. 15, 3044 (2003)

    Article  CAS  Google Scholar 

  23. C.A. Alabi, Z. Chen, Y.S. Yan, M.E. Davis, Chem. Mater. 21, 4645 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Boron Research Institute (BOREN) under contact number 2011. Ç0295 and partially supported by the Turkish Academy of Sciences (TÜBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevim Ünügür Çelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çelik, S.Ü., Bozkurt, A. Enhancing the Anhydrous Proton Conductivity of Boronic and Phosphonic Acid Functional Copolymers by Grafting With Flexible Spacers. J Inorg Organomet Polym 23, 846–854 (2013). https://doi.org/10.1007/s10904-013-9851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-013-9851-8

Keywords

Navigation